The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Rigidity of Einstein manifolds and generalized quasi-Einstein manifolds”

On a Class of Generalized quasi-Einstein Manifolds with Applications to Relativity

Sahanous Mallick, Uday Chand De (2016)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

Quasi Einstein manifold is a simple and natural generalization of Einstein manifold. The object of the present paper is to study some properties of generalized quasi Einstein manifolds. We also discuss G ( Q E ) 4 with space-matter tensor and some properties related to it. Two non-trivial examples have been constructed to prove the existence of generalized quasi Einstein spacetimes.

On the existence of generalized quasi-Einstein manifolds

Uday Chand De, Sahanous Mallick (2011)

Archivum Mathematicum

Similarity:

The object of the present paper is to study a type of Riemannian manifold called generalized quasi-Einstein manifold. The existence of a generalized quasi-Einstein manifold have been proved by non-trivial examples.

Compact lcK manifolds with parallel vector fields

Andrei Moroianu (2015)

Complex Manifolds

Similarity:

We show that for n > 2 a compact locally conformally Kähler manifold (M2n , g, J) carrying a nontrivial parallel vector field is either Vaisman, or globally conformally Kähler, determined in an explicit way by a compact Kähler manifold of dimension 2n − 2 and a real function.

On compact astheno-Kähler manifolds

Koji Matsuo, Takao Takahashi (2001)

Colloquium Mathematicae

Similarity:

We prove that every compact balanced astheno-Kähler manifold is Kähler, and that there exists an astheno-Kähler structure on the product of certain compact normal almost contact metric manifolds.