Displaying similar documents to “The hyper-order of solutions of certain linear complex differential equations”

A note on some results of Li and Li

Sujoy Majumder, Somnath Saha (2018)

Mathematica Bohemica

Similarity:

The purpose of the paper is to study the uniqueness problems of linear differential polynomials of entire functions sharing a small function and obtain some results which improve and generalize the related results due to J. T. Li and P. Li (2015). Basically we pay our attention to the condition λ ( f ) 1 in Theorems 1.3, 1.4 from J. T. Li and P. Li (2015). Some examples have been exhibited to show that conditions used in the paper are sharp.

Growth of solutions of a class of complex differential equations

Ting-Bin Cao (2009)

Annales Polonici Mathematici

Similarity:

The main purpose of this paper is to partly answer a question of L. Z. Yang [Israel J. Math. 147 (2005), 359-370] by proving that every entire solution f of the differential equation f ' - e P ( z ) f = 1 has infinite order and its hyperorder is a positive integer or infinity, where P is a nonconstant entire function of order less than 1/2. As an application, we obtain a uniqueness theorem for entire functions related to a conjecture of Brück [Results Math. 30 (1996), 21-24].

On deviations from rational functions of entire functions of finite lower order

E. Ciechanowicz, I. I. Marchenko (2007)

Annales Polonici Mathematici

Similarity:

Let f be a transcendental entire function of finite lower order, and let q ν be rational functions. For 0 < γ < ∞ let B(γ):= πγ/sinπγ if γ ≤ 0.5, B(γ):= πγ if γ > 0.5. We estimate the upper and lower logarithmic density of the set r : 1 ν k l o g m a x | | z | | = r | f ( z ) q ν ( z ) | 1 < B ( γ ) T ( r , f ) .

Uniqueness of entire functions and fixed points

Xiao-Guang Qi, Lian-Zhong Yang (2010)

Annales Polonici Mathematici

Similarity:

Let f and g be entire functions, n, k and m be positive integers, and λ, μ be complex numbers with |λ| + |μ| ≠ 0. We prove that ( f ( z ) ( λ f m ( z ) + μ ) ) ( k ) must have infinitely many fixed points if n ≥ k + 2; furthermore, if ( f ( z ) ( λ f m ( z ) + μ ) ) ( k ) and ( g ( z ) ( λ g m ( z ) + μ ) ) ( k ) have the same fixed points with the same multiplicities, then either f ≡ cg for a constant c, or f and g assume certain forms provided that n > 2k + m* + 4, where m* is an integer that depends only on λ.

Complex Oscillation Theory of Differential Polynomials

Abdallah El Farissi, Benharrat Belaïdi (2011)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

In this paper, we investigate the relationship between small functions and differential polynomials g f ( z ) = d 2 f ' ' + d 1 f ' + d 0 f , where d 0 ( z ) , d 1 ( z ) , d 2 ( z ) are entire functions that are not all equal to zero with ρ ( d j ) < 1 ( j = 0 , 1 , 2 ) generated by solutions of the differential equation f ' ' + A 1 ( z ) e a z f ' + A 0 ( z ) e b z f = F , where a , b are complex numbers that satisfy a b ( a - b ) 0 and A j ( z ) ¬ 0 ( j = 0 , 1 ), F ( z ) ¬ 0 are entire functions such that max ρ ( A j ) , j = 0 , 1 , ρ ( F ) < 1 .

Entire function sharing two polynomials with its k th derivative

Sujoy Majumder, Nabadwip Sarkar (2024)

Mathematica Bohemica

Similarity:

We investigate the uniqueness problem of entire functions that share two polynomials with their k th derivatives and obtain some results which improve and generalize the recent result due to Lü and Yi (2011). Also, we exhibit some examples to show that the conditions of our results are the best possible.

Zeros of solutions of certain higher order linear differential equations

Hong-Yan Xu, Cai-Feng Yi (2010)

Annales Polonici Mathematici

Similarity:

We investigate the exponent of convergence of the zero-sequence of solutions of the differential equation f ( k ) + a k - 1 ( z ) f ( k - 1 ) + + a ( z ) f ' + D ( z ) f = 0 , (1) where D ( z ) = Q ( z ) e P ( z ) + Q ( z ) e P ( z ) + Q ( z ) e P ( z ) , P₁(z),P₂(z),P₃(z) are polynomials of degree n ≥ 1, Q₁(z),Q₂(z),Q₃(z), a j ( z ) (j=1,..., k-1) are entire functions of order less than n, and k ≥ 2.

A remark on the approximation theorems of Whitney and Carleman-Scheinberg

Michal Johanis (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We show that a C k -smooth mapping on an open subset of n , k { 0 , } , can be approximated in a fine topology and together with its derivatives by a restriction of a holomorphic mapping with explicitly described domain. As a corollary we obtain a generalisation of the Carleman-Scheinberg theorem on approximation by entire functions.

Convergence of Taylor series in Fock spaces

Haiying Li (2014)

Studia Mathematica

Similarity:

It is well known that the Taylor series of every function in the Fock space F α p converges in norm when 1 < p < ∞. It is also known that this is no longer true when p = 1. In this note we consider the case 0 < p < 1 and show that the Taylor series of functions in F α p do not necessarily converge “in norm”.

Non-landing hairs in Sierpiński curve Julia sets of transcendental entire maps

Antonio Garijo, Xavier Jarque, Mónica Moreno Rocha (2011)

Fundamenta Mathematicae

Similarity:

We consider the family of transcendental entire maps given by f a ( z ) = a ( z - ( 1 - a ) ) e x p ( z + a ) where a is a complex parameter. Every map has a superattracting fixed point at z = -a and an asymptotic value at z = 0. For a > 1 the Julia set of f a is known to be homeomorphic to the Sierpiński universal curve, thus containing embedded copies of any one-dimensional plane continuum. In this paper we study subcontinua of the Julia set that can be defined in a combinatorial manner. In particular, we show the existence of...

Entire functions of exponential type not vanishing in the half-plane z > k , where k > 0

Mohamed Amine Hachani (2017)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let P ( z ) be a polynomial of degree n having no zeros in | z | < k , k 1 , and let Q ( z ) : = z n P ( 1 / z ¯ ) ¯ . It was shown by Govil that if max | z | = 1 | P ' ( z ) | and max | z | = 1 | Q ' ( z ) | are attained at the same point of the unit circle | z | = 1 , then max | z | = 1 | P ' ( z ) | n 1 + k n max | z | = 1 | P ( z ) | . The main result of the present article is a generalization of Govil’s polynomial inequality to a class of entire functions of exponential type.

Twinning in minerals and metals: remarks on the comparison of a thermoelastic theory with some experimental results. Mechanical twinning and growth twinning. Nota II

Giovanni Zanzotto (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

In this Note II we continue the analysis of the phenomenon of mechanical twinning that we began in a preceding Note I ( 1 ) . Furthermore, we point out some fundamental properties useful in the study of growth twins, for which a fully comprehensive thermoelastic theory is not yet available.