Displaying similar documents to “The linear bound in A₂ for Calderón-Zygmund operators: a survey”

Lipschitz continuity in Muckenhoupt 𝓐₁ weighted function spaces

Dorothee D. Haroske (2011)

Banach Center Publications

Similarity:

We study continuity envelopes of function spaces B p , q s ( , w ) and F p , q s ( , w ) where the weight belongs to the Muckenhoupt class ₁. This essentially extends partial forerunners in [13, 14]. We also indicate some applications of these results.

Composition in ultradifferentiable classes

Armin Rainer, Gerhard Schindl (2014)

Studia Mathematica

Similarity:

We characterize stability under composition of ultradifferentiable classes defined by weight sequences M, by weight functions ω, and, more generally, by weight matrices , and investigate continuity of composition (g,f) ↦ f ∘ g. In addition, we represent the Beurling space ( ω ) and the Roumieu space ω as intersection and union of spaces ( M ) and M for associated weight sequences, respectively.

Weighted boundedness of Toeplitz type operators related to singular integral operators with non-smooth kernel

Xiaosha Zhou, Lanzhe Liu (2013)

Colloquium Mathematicae

Similarity:

Some weighted sharp maximal function inequalities for the Toeplitz type operator T b = k = 1 m T k , 1 M b T k , 2 are established, where T k , 1 are a fixed singular integral operator with non-smooth kernel or ±I (the identity operator), T k , 2 are linear operators defined on the space of locally integrable functions, k = 1,..., m, and M b ( f ) = b f . The weighted boundedness of T b on Morrey spaces is obtained by using sharp maximal function inequalities.

The representation of multi-hypergraphs by set intersections

Stanisław Bylka, Jan Komar (2007)

Discussiones Mathematicae Graph Theory

Similarity:

This paper deals with weighted set systems (V,,q), where V is a set of indices, 2 V and the weight q is a nonnegative integer function on . The basic idea of the paper is to apply weighted set systems to formulate restrictions on intersections. It is of interest to know whether a weighted set system can be represented by set intersections. An intersection representation of (V,,q) is defined to be an indexed family R = ( R v ) v V of subsets of a set S such that | v E R v | = q ( E ) for each E ∈ . A necessary condition...

Mixed A p - A estimates with one supremum

Andrei K. Lerner, Kabe Moen (2013)

Studia Mathematica

Similarity:

We establish several mixed A p - A bounds for Calderón-Zygmund operators that only involve one supremum. We address both cases when the A part of the constant is measured using the exponential-logarithmic definition and using the Fujii-Wilson definition. In particular, we answer a question of the first author and provide an answer, up to a logarithmic factor, to a conjecture of Hytönen and Lacey. Moreover, we give an example to show that our bounds with the logarithmic factors can be arbitrarily...

Solutions to the equation div u = f in weighted Sobolev spaces

Katrin Schumacher (2008)

Banach Center Publications

Similarity:

We consider the problem div u = f in a bounded Lipschitz domain Ω, where f with Ω f = 0 is given. It is shown that the solution u, constructed as in Bogovski’s approach in [1], fulfills estimates in the weighted Sobolev spaces W w k , q ( Ω ) , where the weight function w is in the class of Muckenhoupt weights A q .

Weighted norm inequalities for maximal singular integrals with nondoubling measures

Guoen Hu, Dachun Yang (2008)

Studia Mathematica

Similarity:

Let μ be a nonnegative Radon measure on d which satisfies μ(B(x,r)) ≤ Crⁿ for any x d and r > 0 and some positive constants C and n ∈ (0,d]. In this paper, some weighted norm inequalities with A p ϱ ( μ ) weights of Muckenhoupt type are obtained for maximal singular integral operators with such a measure μ, via certain weighted estimates with A ϱ ( μ ) weights of Muckenhoupt type involving the John-Strömberg maximal operator and the John-Strömberg sharp maximal operator, where ϱ,p ∈ [1,∞).

The weighted Hardy spaces associated to self-adjoint operators and their duality on product spaces

Suying Liu, Minghua Yang (2018)

Czechoslovak Mathematical Journal

Similarity:

Let L be a non-negative self-adjoint operator acting on L 2 ( n ) satisfying a pointwise Gaussian estimate for its heat kernel. Let w be an A r weight on n × n , 1 < r < . In this article we obtain a weighted atomic decomposition for the weighted Hardy space H L , w p ( n × n ) , 0 < p 1 associated to L . Based on the atomic decomposition, we show the dual relationship between H L , w 1 ( n × n ) and BMO L , w ( n × n ) .

Boundedness of Littlewood-Paley operators relative to non-isotropic dilations

Shuichi Sato (2019)

Czechoslovak Mathematical Journal

Similarity:

We consider Littlewood-Paley functions associated with a non-isotropic dilation group on n . We prove that certain Littlewood-Paley functions defined by kernels with no regularity concerning smoothness are bounded on weighted L p spaces, 1 < p < , with weights of the Muckenhoupt class. This, in particular, generalizes a result of N. Rivière (1971).

Weighted estimates for the iterated commutators of multilinear maximal and fractional type operators

Qingying Xue (2013)

Studia Mathematica

Similarity:

The following iterated commutators T , Π b of the maximal operator for multilinear singular integral operators and I α , Π b of the multilinear fractional integral operator are introduced and studied: T , Π b ( f ) ( x ) = s u p δ > 0 | [ b , [ b , [ b m - 1 , [ b , T δ ] ] m - 1 ] ] ( f ) ( x ) | , I α , Π b ( f ) ( x ) = [ b , [ b , [ b m - 1 , [ b , I α ] ] m - 1 ] ] ( f ) ( x ) , where T δ are the smooth truncations of the multilinear singular integral operators and I α is the multilinear fractional integral operator, b i B M O for i = 1,…,m and f⃗ = (f1,…,fm). Weighted strong and L(logL) type end-point estimates for the above iterated commutators associated with two classes of multiple...

Polyanalytic Besov spaces and approximation by dilatations

Ali Abkar (2024)

Czechoslovak Mathematical Journal

Similarity:

Using partial derivatives f / z and f / z ¯ , we introduce Besov spaces of polyanalytic functions in the open unit disk, as well as in the upper half-plane. We then prove that the dilatations of functions in certain weighted polyanalytic Besov spaces converge to the same functions in norm. When restricted to the open unit disk, we prove that each polyanalytic function of degree q can be approximated in norm by polyanalytic polynomials of degree at most q .

Remarks on the critical Besov space and its embedding into weighted Besov-Orlicz spaces

Hidemitsu Wadade (2010)

Studia Mathematica

Similarity:

We present several continuous embeddings of the critical Besov space B p n / p , ρ ( ) . We first establish a Gagliardo-Nirenberg type estimate | | u | | q , w r 0 , ν C ( 1 / ( n - r ) ) 1 / q + 1 / ν - 1 / ρ ( q / r ) 1 / ν - 1 / ρ | | u | | p 0 , ρ ( n - r ) p / n q | | u | | p n / p , ρ 1 - ( n - r ) p / n q , for 1 < p ≤ q < ∞, 1 ≤ ν < ρ ≤ ∞ and the weight function w r ( x ) = 1 / ( | x | r ) with 0 < r < n. Next, we prove the corresponding Trudinger type estimate, and obtain it in terms of the embedding B p n / p , ρ ( ) B Φ , w r 0 , ν ( ) , where the function Φ₀ of the weighted Besov-Orlicz space B Φ , w r 0 , ν ( ) is a Young function of the exponential type. Another point of interest is to embed B p n / p , ρ ( ) into the weighted Besov...

Beurling algebra analogues of theorems of Wiener-Lévy-Żelazko and Żelazko

S. J. Bhatt, P. A. Dabhi, H. V. Dedania (2009)

Studia Mathematica

Similarity:

Let 0 < p ≤ 1, let ω: ℤ → [1,∞) be a weight on ℤ and let f be a nowhere vanishing continuous function on the unit circle Γ whose Fourier series satisfies n | f ̂ ( n ) | p ω ( n ) < . Then there exists a weight ν on ℤ such that n | ( 1 / f ) ^ ( n ) | p ν ( n ) < . Further, ν is non-constant if and only if ω is non-constant; and ν = ω if ω is non-quasianalytic. This includes the classical Wiener theorem (p = 1, ω = 1), Domar theorem (p = 1, ω is non-quasianalytic), Żelazko theorem (ω = 1) and a recent result of Bhatt and Dedania (p = 1). An...

Some weighted norm inequalities for a one-sided version of g * λ

L. de Rosa, C. Segovia (2006)

Studia Mathematica

Similarity:

We study the boundedness of the one-sided operator g λ , φ between the weighted spaces L p ( M ¯ w ) and L p ( w ) for every weight w. If λ = 2/p whenever 1 < p < 2, and in the case p = 1 for λ > 2, we prove the weak type of g λ , φ . For every λ > 1 and p = 2, or λ > 2/p and 1 < p < 2, the boundedness of this operator is obtained. For p > 2 and λ > 1, we obtain the boundedness of g λ , φ from L p ( ( M ¯ ) [ p / 2 ] + 1 w ) to L p ( w ) , where ( M ¯ ) k denotes the operator M¯ iterated k times.

Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spaces

Gladis Pradolini, Jorgelina Recchi (2018)

Czechoslovak Mathematical Journal

Similarity:

Let μ be a nonnegative Borel measure on d satisfying that μ ( Q ) l ( Q ) n for every cube Q n , where l ( Q ) is the side length of the cube Q and 0 < n d . We study the class of pairs of weights related to the boundedness of radial maximal operators of fractional type associated to a Young function B in the context of non-homogeneous spaces related to the measure μ . Our results include two-weighted norm and weak type inequalities and pointwise estimates. Particularly, we give an improvement of a two-weighted result...

Isometric composition operators on weighted Dirichlet space

Shi-An Han, Ze-Hua Zhou (2016)

Czechoslovak Mathematical Journal

Similarity:

We investigate isometric composition operators on the weighted Dirichlet space 𝒟 α with standard weights ( 1 - | z | 2 ) α , α > - 1 . The main technique used comes from Martín and Vukotić who completely characterized the isometric composition operators on the classical Dirichlet space 𝒟 . We solve some of these but not in general. We also investigate the situation when 𝒟 α is equipped with another equivalent norm.

Note on duality of weighted multi-parameter Triebel-Lizorkin spaces

Wei Ding, Jiao Chen, Yaoming Niu (2019)

Czechoslovak Mathematical Journal

Similarity:

We study the duality theory of the weighted multi-parameter Triebel-Lizorkin spaces F ˙ p α , q ( ω ; n 1 × n 2 ) . This space has been introduced and the result ( F ˙ p α , q ( ω ; n 1 × n 2 ) ) * = CMO p - α , q ' ( ω ; n 1 × n 2 ) for 0 < p 1 has been proved in Ding, Zhu (2017). In this paper, for 1 < p < , 0 < q < we establish its dual space H ˙ p α , q ( ω ; n 1 × n 2 ) .

Koecher-Maass series of a certain half-integral weight modular form related to the Duke-Imamoḡlu-Ikeda lift

Hidenori Katsurada, Hisa-aki Kawamura (2014)

Acta Arithmetica

Similarity:

Let k and n be positive even integers. For a cuspidal Hecke eigenform h in the Kohnen plus space of weight k - n/2 + 1/2 for Γ₀(4), let f be the corresponding primitive form of weight 2k-n for SL₂(ℤ) under the Shimura correspondence, and Iₙ(h) the Duke-Imamoḡlu-Ikeda lift of h to the space of cusp forms of weight k for Spₙ(ℤ). Moreover, let ϕ I ( h ) , 1 be the first Fourier-Jacobi coefficient of Iₙ(h), and σ n - 1 ( ϕ I ( h ) , 1 ) be the cusp form in the generalized Kohnen plus space of weight k - 1/2 corresponding to...