The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On embeddings of function classes defined by constructive characteristics”

Pointwise inequalities and approximation in fractional Sobolev spaces

David Swanson (2002)

Studia Mathematica

Similarity:

We prove that a function belonging to a fractional Sobolev space L α , p ( ) may be approximated in capacity and norm by smooth functions belonging to C m , λ ( ) , 0 < m + λ < α. Our results generalize and extend those of [12], [4], [14], and [11].

Lebesgue type points in strong (C,α) approximation of Fourier series

Włodzimierz Łenski, Bogdan Roszak (2011)

Banach Center Publications

Similarity:

We present an estimation of the H k , k r q , α f and H λ , u ϕ , α f means as approximation versions of the Totik type generalization (see [5], [6]) of the result of G. H. Hardy, J. E. Littlewood. Some corollaries on the norm approximation are also given.

Approximation polynômiale dans des classes de jets

Moulay Taïb Belghiti, Boutayeb El Ammari, Laurent P. Gendre (2015)

Banach Center Publications

Similarity:

In this paper we obtain results on approximation, in the multidimensional complex case, of functions from ( K ) by complex polynomials. In particular, we generalize the results of Pawłucki and Pleśniak (1986) for the real case and of Siciak (1993) in the case of one complex variable. Furthermore, we extend the results of Baouendi and Goulaouic (1971) who obtained the order of approximation in the case of Gevrey classes over real compacts with smooth analytic boundary and we present the orders...

The degree of approximation by Hausdorff means of a conjugate Fourier series

Sergiusz Kęska (2016)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

The purpose of this paper is to analyze the degree of approximation of a function f ¯ that is a conjugate of a function f belonging to the Lipschitz class by Hausdorff means of a conjugate series of the Fourier series.

Limiting behaviour of intrinsic seminorms in fractional order Sobolev spaces

Rémi Arcangéli, Juan José Torrens (2013)

Studia Mathematica

Similarity:

We collect and extend results on the limit of σ 1 - k ( 1 - σ ) k | v | l + σ , p , Ω p as σ → 0⁺ or σ → 1¯, where Ω is ℝⁿ or a smooth bounded domain, k ∈ 0,1, l ∈ ℕ, p ∈ [1,∞), and | · | l + σ , p , Ω is the intrinsic seminorm of order l+σ in the Sobolev space W l + σ , p ( Ω ) . In general, the above limit is equal to c [ v ] p , where c and [·] are, respectively, a constant and a seminorm that we explicitly provide. The particular case p = 2 for Ω = ℝⁿ is also examined and the results are then proved by using the Fourier transform.

Some applications of subordination theorems associated with fractional q -calculus operator

Wafaa Y. Kota, Rabha Mohamed El-Ashwah (2023)

Mathematica Bohemica

Similarity:

Using the operator 𝔇 q , ϱ m ( λ , l ) , we introduce the subclasses 𝔜 q , ϱ * m ( l , λ , γ ) and 𝔎 q , ϱ * m ( l , λ , γ ) of normalized analytic functions. Among the results investigated for each of these function classes, we derive some subordination results involving the Hadamard product of the associated functions. The interesting consequences of some of these subordination results are also discussed. Also, we derive integral means results for these classes.

On subextension and approximation of plurisubharmonic functions with given boundary values

Hichame Amal (2014)

Annales Polonici Mathematici

Similarity:

Our aim in this article is the study of subextension and approximation of plurisubharmonic functions in χ ( Ω , H ) , the class of functions with finite χ-energy and given boundary values. We show that, under certain conditions, one can approximate any function in χ ( Ω , H ) by an increasing sequence of plurisubharmonic functions defined on strictly larger domains.

Routh-type L 2 model reduction revisited

Wiesław Krajewski, Umberto Viaro (2018)

Kybernetika

Similarity:

A computationally simple method for generating reduced-order models that minimise the L 2 norm of the approximation error while preserving a number of second-order information indices as well as the steady-state value of the step response, is presented. The method exploits the energy-conservation property peculiar to the Routh reduction method and the interpolation property of the L 2 -optimal approximation. Two examples taken from the relevant literature show that the suggested techniques...

Whitney type inequality, pointwise version

Yu. A. Brudnyi, I. E. Gopengauz (2013)

Studia Mathematica

Similarity:

The main result of the paper estimates the asymptotic behavior of local polynomial approximation for L p functions at a point via the behavior of μ-differences, a generalization of the kth difference. The result is applied to prove several new and extend classical results on pointwise differentiability of L p functions including Marcinkiewicz-Zygmund’s and M. Weiss’ theorems. In particular, we present a solution of the problem posed in the 30s by Marcinkiewicz and Zygmund.

Fractional integral operators on B p , λ with Morrey-Campanato norms

Katsuo Matsuoka, Eiichi Nakai (2011)

Banach Center Publications

Similarity:

We introduce function spaces B p , λ with Morrey-Campanato norms, which unify B p , λ , C M O p , λ and Morrey-Campanato spaces, and prove the boundedness of the fractional integral operator I α on these spaces.

Some duality results on bounded approximation properties of pairs

Eve Oja, Silja Treialt (2013)

Studia Mathematica

Similarity:

The main result is as follows. Let X be a Banach space and let Y be a closed subspace of X. Assume that the pair ( X * , Y ) has the λ-bounded approximation property. Then there exists a net ( S α ) of finite-rank operators on X such that S α ( Y ) Y and | | S α | | λ for all α, and ( S α ) and ( S * α ) converge pointwise to the identity operators on X and X*, respectively. This means that the pair (X,Y) has the λ-bounded duality approximation property.

Convergence of greedy approximation II. The trigonometric system

S. V. Konyagin, V. N. Temlyakov (2003)

Studia Mathematica

Similarity:

We study the following nonlinear method of approximation by trigonometric polynomials. For a periodic function f we take as an approximant a trigonometric polynomial of the form G ( f ) : = k Λ f ̂ ( k ) e i ( k , x ) , where Λ d is a set of cardinality m containing the indices of the m largest (in absolute value) Fourier coefficients f̂(k) of the function f. Note that Gₘ(f) gives the best m-term approximant in the L₂-norm, and therefore, for each f ∈ L₂, ||f-Gₘ(f)||₂ → 0 as m → ∞. It is known from previous results that in...

On the approximation of real continuous functions by series of solutions of a single system of partial differential equations

Carsten Elsner (2006)

Colloquium Mathematicae

Similarity:

We prove the existence of an effectively computable integer polynomial P(x,t₀,...,t₅) having the following property. Every continuous function f : s can be approximated with arbitrary accuracy by an infinite sum r = 1 H r ( x , . . . , x s ) C ( s ) of analytic functions H r , each solving the same system of universal partial differential equations, namely P ( x σ ; H r , H r / x σ , . . . , H r / x σ ) = 0 (σ = 1,..., s).

A spatially sixth-order hybrid L 1 -CCD method for solving time fractional Schrödinger equations

Chun-Hua Zhang, Jun-Wei Jin, Hai-Wei Sun, Qin Sheng (2021)

Applications of Mathematics

Similarity:

We consider highly accurate schemes for nonlinear time fractional Schrödinger equations (NTFSEs). While an L 1 strategy is employed for approximating the Caputo fractional derivative in the temporal direction, compact CCD finite difference approaches are incorporated in the space. A highly effective hybrid L 1 -CCD method is implemented successfully. The accuracy of this linearized scheme is order six in space, and order 2 - γ in time, where 0 < γ < 1 is the order of the Caputo fractional derivative...

On Sobolev spaces of fractional order and ε-families of operators on spaces of homogeneous type

A. Gatto, Stephen Vági (1999)

Studia Mathematica

Similarity:

We introduce Sobolev spaces L α p for 1 < p < ∞ and small positive α on spaces of homogeneous type as the classes of functions f in L p with fractional derivative of order α, D α f , as introduced in [2], in L p . We show that for small α, L α p coincides with the continuous version of the Triebel-Lizorkin space F p α , 2 as defined by Y. S. Han and E. T. Sawyer in [4]. To prove this result we give a more general definition of ε-families of operators on spaces of homogeneous type, in which the identity...

A remark on the approximation theorems of Whitney and Carleman-Scheinberg

Michal Johanis (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We show that a C k -smooth mapping on an open subset of n , k { 0 , } , can be approximated in a fine topology and together with its derivatives by a restriction of a holomorphic mapping with explicitly described domain. As a corollary we obtain a generalisation of the Carleman-Scheinberg theorem on approximation by entire functions.