Morita equivalence and symplectic realizations of Poisson manifolds
Ping Xu (1992)
Annales scientifiques de l'École Normale Supérieure
Similarity:
Ping Xu (1992)
Annales scientifiques de l'École Normale Supérieure
Similarity:
Piotr Stachura (2000)
Banach Center Publications
Similarity:
Marius Crainic, Chenchang Zhu (2007)
Annales de l’institut Fourier
Similarity:
We discuss the integrability of Jacobi manifolds by contact groupoids, and then look at what the Jacobi point of view brings new into Poisson geometry. In particular, using contact groupoids, we prove a Kostant-type theorem on the prequantization of symplectic groupoids, which answers a question posed by Weinstein and Xu. The methods used are those of Crainic-Fernandes on -paths and monodromy group(oid)s of algebroids. In particular, most of the results we obtain are valid also in the...
Alan Weinstein, Ping Xu (1991)
Journal für die reine und angewandte Mathematik
Similarity:
Stevanović, Nebojša, Protić, Petar P. (1999)
Novi Sad Journal of Mathematics
Similarity:
Celakoska-Jordanova, Vesna (2010)
Mathematica Balkanica New Series
Similarity:
AMS Subj. Classification: 03C05, 08B20 Free algebras are very important in studying classes of algebras, especially varieties of algebras. Any algebra that belongs to a given variety of algebras can be characterized as a homomorphic image of a free algebra of that variety. Describing free algebras is an important task that can be quite complicated, since there is no general method to resolve this problem. The aim of this work is to investigate classes of groupoids, i.e. algebras...
V. Sathyabhama (1977)
Publications de l'Institut Mathématique
Similarity:
Ivan, Gh. (1999)
Balkan Journal of Geometry and its Applications (BJGA)
Similarity:
W. Waliszewski
Similarity:
CONTENTSIntroduction................................................................................................................................................. 3I. TERMS AND NOTATION....................................................................................................................... 5II. GROUPOIDS AND CATEGORIES...................................................................................................... 61. The notion of groupoid............................................................................................................................
J. H. Folkman, R. L. Graham (1972)
Colloquium Mathematicae
Similarity: