Displaying similar documents to “Shadow trees of Mandelbrot sets”

The relation between the number of leaves of a tree and its diameter

Pu Qiao, Xingzhi Zhan (2022)

Czechoslovak Mathematical Journal

Similarity:

Let L ( n , d ) denote the minimum possible number of leaves in a tree of order n and diameter d . Lesniak (1975) gave the lower bound B ( n , d ) = 2 ( n - 1 ) / d for L ( n , d ) . When d is even, B ( n , d ) = L ( n , d ) . But when d is odd, B ( n , d ) is smaller than L ( n , d ) in general. For example, B ( 21 , 3 ) = 14 while L ( 21 , 3 ) = 19 . In this note, we determine L ( n , d ) using new ideas. We also consider the converse problem and determine the minimum possible diameter of a tree with given order and number of leaves.

A lower bound for the 3-pendant tree-connectivity of lexicographic product graphs

Yaping Mao, Christopher Melekian, Eddie Cheng (2023)

Czechoslovak Mathematical Journal

Similarity:

For a connected graph G = ( V , E ) and a set S V ( G ) with at least two vertices, an S -Steiner tree is a subgraph T = ( V ' , E ' ) of G that is a tree with S V ' . If the degree of each vertex of S in T is equal to 1, then T is called a pendant S -Steiner tree. Two S -Steiner trees are if they share no vertices other than S and have no edges in common. For S V ( G ) and | S | 2 , the pendant tree-connectivity τ G ( S ) is the maximum number of internally disjoint pendant S -Steiner trees in G , and for k 2 , the k -pendant tree-connectivity τ k ( G ) is the...

On a characterization of k -trees

De-Yan Zeng, Jian Hua Yin (2015)

Czechoslovak Mathematical Journal

Similarity:

A graph G is a k -tree if either G is the complete graph on k + 1 vertices, or G has a vertex v whose neighborhood is a clique of order k and the graph obtained by removing v from G is also a k -tree. Clearly, a k -tree has at least k + 1 vertices, and G is a 1-tree (usual tree) if and only if it is a 1 -connected graph and has no K 3 -minor. In this paper, motivated by some properties of 2-trees, we obtain a characterization of k -trees as follows: if G is a graph with at least k + 1 vertices, then G is...

Spanning trees whose reducible stems have a few branch vertices

Pham Hoang Ha, Dang Dinh Hanh, Nguyen Thanh Loan, Ngoc Diep Pham (2021)

Czechoslovak Mathematical Journal

Similarity:

Let T be a tree. Then a vertex of T with degree one is a leaf of T and a vertex of degree at least three is a branch vertex of T . The set of leaves of T is denoted by L ( T ) and the set of branch vertices of T is denoted by B ( T ) . For two distinct vertices u , v of T , let P T [ u , v ] denote the unique path in T connecting u and v . Let T be a tree with B ( T ) . For each leaf x of T , let y x denote the nearest branch vertex to x . We delete V ( P T [ x , y x ] ) { y x } from T for all x L ( T ) . The resulting subtree of T is called the reducible stem...

On graceful colorings of trees

Sean English, Ping Zhang (2017)

Mathematica Bohemica

Similarity:

A proper coloring c : V ( G ) { 1 , 2 , ... , k } , k 2 of a graph G is called a graceful k -coloring if the induced edge coloring c ' : E ( G ) { 1 , 2 , ... , k - 1 } defined by c ' ( u v ) = | c ( u ) - c ( v ) | for each edge u v of G is also proper. The minimum integer k for which G has a graceful k -coloring is the graceful chromatic number χ g ( G ) . It is known that if T is a tree with maximum degree Δ , then χ g ( T ) 5 3 Δ and this bound is best possible. It is shown for each integer Δ 2 that there is an infinite class of trees T with maximum degree Δ such that χ g ( T ) = 5 3 Δ . In particular, we investigate for each...

Quasi-tree graphs with the minimal Sombor indices

Yibo Li, Huiqing Liu, Ruiting Zhang (2022)

Czechoslovak Mathematical Journal

Similarity:

The Sombor index S O ( G ) of a graph G is the sum of the edge weights d G 2 ( u ) + d G 2 ( v ) of all edges u v of G , where d G ( u ) denotes the degree of the vertex u in G . A connected graph G = ( V , E ) is called a quasi-tree if there exists u V ( G ) such that G - u is a tree. Denote 𝒬 ( n , k ) = { G : G is a quasi-tree graph of order n with G - u being a tree and d G ( u ) = k } . We determined the minimum and the second minimum Sombor indices of all quasi-trees in 𝒬 ( n , k ) . Furthermore, we characterized the corresponding extremal graphs, respectively.

On γ-labelings of trees

Gary Chartrand, David Erwin, Donald W. VanderJagt, Ping Zhang (2005)

Discussiones Mathematicae Graph Theory

Similarity:

Let G be a graph of order n and size m. A γ-labeling of G is a one-to-one function f:V(G) → 0,1,2,...,m that induces a labeling f’: E(G) → 1,2,...,m of the edges of G defined by f’(e) = |f(u)-f(v)| for each edge e = uv of G. The value of a γ-labeling f is v a l ( f ) = Σ e E ( G ) f ' K ( e ) . The maximum value of a γ-labeling of G is defined as v a l m a x ( G ) = m a x v a l ( f ) : f i s a γ - l a b e l i n g o f G ; while the minimum value of a γ-labeling of G is v a l m i n ( G ) = m i n v a l ( f ) : f i s a γ - l a b e l i n g o f G ; The values v a l m a x ( S p , q ) and v a l m i n ( S p , q ) are determined for double stars S p , q . We present characterizations of connected graphs G of order n for which...

Nonexistence results for the Cauchy problem of some systems of hyperbolic equations

Mokhtar Kirane, Salim Messaoudi (2002)

Annales Polonici Mathematici

Similarity:

We consider the systems of hyperbolic equations ⎧ u = Δ ( a ( t , x ) u ) + Δ ( b ( t , x ) v ) + h ( t , x ) | v | p , t > 0, x N , (S1) ⎨ ⎩ v = Δ ( c ( t , x ) v ) + k ( t , x ) | u | q , t > 0, x N u = Δ ( a ( t , x ) u ) + h ( t , x ) | v | p , t > 0, x N , (S2) ⎨ ⎩ v = Δ ( c ( t , x ) v ) + l ( t , x ) | v | m + k ( t , x ) | u | q , t > 0, x N , (S3) ⎧ u = Δ ( a ( t , x ) u ) + Δ ( b ( t , x ) v ) + h ( t , x ) | u | p , t > 0, x N , ⎨ ⎩ v = Δ ( c ( t , x ) v ) + k ( t , x ) | v | q , t > 0, x N , in ( 0 , ) × N with u(0,x) = u₀(x), v(0,x) = v₀(x), uₜ(0,x) = u₁(x), vₜ(0,x) = v₁(x). We show that, in each case, there exists a bound B on N such that for 1 ≤ N ≤ B solutions to the systems blow up in finite time.

Σ s -products revisited

Reynaldo Rojas-Hernández (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We show that any Σ s -product of at most 𝔠 -many L Σ ( ω ) -spaces has the L Σ ( ω ) -property. This result generalizes some known results about L Σ ( ω ) -spaces. On the other hand, we prove that every Σ s -product of monotonically monolithic spaces is monotonically monolithic, and in a similar form, we show that every Σ s -product of Collins-Roscoe spaces has the Collins-Roscoe property. These results generalize some known results about the Collins-Roscoe spaces and answer some questions due to Tkachuk [Lifting the Collins-Roscoe...

Cardinal invariants for κ-box products: weight, density character and Suslin number

W. W. Comfort, Ivan S. Gotchev

Similarity:

The symbol ( X I ) κ (with κ ≥ ω) denotes the space X I : = i I X i with the κ-box topology; this has as base all sets of the form U = i I U i with U i open in X i and with | i I : U i X i | < κ . The symbols w, d and S denote respectively the weight, density character and Suslin number. Generalizing familiar classical results, the authors show inter alia: Theorem 3.1.10(b). If κ ≤ α⁺, |I| = α and each X i contains the discrete space 0,1 and satisfies w ( X i ) α , then w ( X κ ) = α < κ . Theorem 4.3.2. If ω κ | I | 2 α and X = ( D ( α ) ) I with D(α) discrete, |D(α)| = α, then d ( ( X I ) κ ) = α < κ . Corollaries 5.2.32(a)...

Theoretical analysis for 1 - 2 minimization with partial support information

Haifeng Li, Leiyan Guo (2025)

Applications of Mathematics

Similarity:

We investigate the recovery of k -sparse signals using the 1 - 2 minimization model with prior support set information. The prior support set information, which is believed to contain the indices of nonzero signal elements, significantly enhances the performance of compressive recovery by improving accuracy, efficiency, reducing complexity, expanding applicability, and enhancing robustness. We assume k -sparse signals 𝐱 with the prior support T which is composed of g true indices and b wrong...

C * -points vs P -points and P -points

Jorge Martinez, Warren Wm. McGovern (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In a Tychonoff space X , the point p X is called a C * -point if every real-valued continuous function on C { p } can be extended continuously to p . Every point in an extremally disconnected space is a C * -point. A classic example is the space 𝐖 * = ω 1 + 1 consisting of the countable ordinals together with ω 1 . The point ω 1 is known to be a C * -point as well as a P -point. We supply a characterization of C * -points in totally ordered spaces. The remainder of our time is aimed at studying when a point in a product space...