Displaying similar documents to “A solution to Comfort's question on the countable compactness of powers of a topological group”

Reflecting character and pseudocharacter

Lucia R. Junqueira, Alberto M. E. Levi (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We say that a cardinal function φ reflects an infinite cardinal κ , if given a topological space X with φ ( X ) κ , there exists Y [ X ] κ with φ ( Y ) κ . We investigate some problems, discussed by Hodel and Vaughan in Reflection theorems for cardinal functions, Topology Appl. 100 (2000), 47–66, and Juhász in Cardinal functions and reflection, Topology Atlas Preprint no. 445, 2000, related to the reflection for the cardinal functions character and pseudocharacter. Among other results, we present some new equivalences...

A countably cellular topological group all of whose countable subsets are closed need not be -factorizable

Mihail G. Tkachenko (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We construct a Hausdorff topological group G such that 1 is a precalibre of G (hence, G has countable cellularity), all countable subsets of G are closed and C -embedded in G , but G is not -factorizable. This solves Problem 8.6.3 from the book “Topological Groups and Related Structures" (2008) in the negative.

A new Lindelöf space with points G δ

Alan S. Dow (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove that * implies there is a zero-dimensional Hausdorff Lindelöf space of cardinality 2 1 which has points G δ . In addition, this space has the property that it need not be Lindelöf after countably closed forcing.

Nonnormality of remainders of some topological groups

Aleksander V. Arhangel'skii, J. van Mill (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

It is known that every remainder of a topological group is Lindelöf or pseudocompact. Motivated by this result, we study in this paper when a topological group G has a normal remainder. In a previous paper we showed that under mild conditions on G , the Continuum Hypothesis implies that if the Čech-Stone remainder G * of G is normal, then it is Lindelöf. Here we continue this line of investigation, mainly for the case of precompact groups. We show that no pseudocompact group, whose weight...

On the Set-Theoretic Strength of Countable Compactness of the Tychonoff Product 2

Eleftherios Tachtsis (2010)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We work in ZF set theory (i.e., Zermelo-Fraenkel set theory minus the Axiom of Choice AC) and show the following: 1. The Axiom of Choice for well-ordered families of non-empty sets ( A C W O ) does not imply “the Tychonoff product 2 , where 2 is the discrete space 0,1, is countably compact” in ZF. This answers in the negative the following question from Keremedis, Felouzis, and Tachtsis [Bull. Polish Acad. Sci. Math. 55 (2007)]: Does the Countable Axiom of Choice for families of non-empty sets...

An observation on spaces with a zeroset diagonal

Wei-Feng Xuan (2020)

Mathematica Bohemica

Similarity:

We say that a space X has the discrete countable chain condition (DCCC for short) if every discrete family of nonempty open subsets of X is countable. A space X has a zeroset diagonal if there is a continuous mapping f : X 2 [ 0 , 1 ] with Δ X = f - 1 ( 0 ) , where Δ X = { ( x , x ) : x X } . In this paper, we prove that every first countable DCCC space with a zeroset diagonal has cardinality at most 𝔠 .

Cardinal sequences of length < ω₂ under GCH

István Juhász, Lajos Soukup, William Weiss (2006)

Fundamenta Mathematicae

Similarity:

Let (α) denote the class of all cardinal sequences of length α associated with compact scattered spaces (or equivalently, superatomic Boolean algebras). Also put λ ( α ) = s ( α ) : s ( 0 ) = λ = m i n [ s ( β ) : β < α ] . We show that f ∈ (α) iff for some natural number n there are infinite cardinals λ i > λ > . . . > λ n - 1 and ordinals α , . . . , α n - 1 such that α = α + + α n - 1 and f = f f . . . f n - 1 where each f i λ i ( α i ) . Under GCH we prove that if α < ω₂ then (i) ω ( α ) = s α ω , ω : s ( 0 ) = ω ; (ii) if λ > cf(λ) = ω, λ ( α ) = s α λ , λ : s ( 0 ) = λ , s - 1 λ i s ω - c l o s e d i n α ; (iii) if cf(λ) = ω₁, λ ( α ) = s α λ , λ : s ( 0 ) = λ , s - 1 λ i s ω - c l o s e d a n d s u c c e s s o r - c l o s e d i n α ; (iv) if cf(λ) > ω₁, λ ( α ) = α λ . This yields a complete characterization of the classes (α) for all...

Spaces with property ( D C ( ω 1 ) )

Wei-Feng Xuan, Wei-Xue Shi (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove that if X is a first countable space with property ( D C ( ω 1 ) ) and with a G δ -diagonal then the cardinality of X is at most 𝔠 . We also show that if X is a first countable, DCCC, normal space then the extent of X is at most 𝔠 .

A note on spaces with countable extent

Yan-Kui Song (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let P be a topological property. A space X is said to be star P if whenever 𝒰 is an open cover of X , there exists a subspace A X with property P such that X = S t ( A , 𝒰 ) . In this note, we construct a Tychonoff pseudocompact SCE-space which is not star Lindelöf, which gives a negative answer to a question of Rojas-Sánchez and Tamariz-Mascarúa.

A note on star Lindelöf, first countable and normal spaces

Wei-Feng Xuan (2017)

Mathematica Bohemica

Similarity:

A topological space X is said to be star Lindelöf if for any open cover 𝒰 of X there is a Lindelöf subspace A X such that St ( A , 𝒰 ) = X . The “extent” e ( X ) of X is the supremum of the cardinalities of closed discrete subsets of X . We prove that under V = L every star Lindelöf, first countable and normal space must have countable extent. We also obtain an example under MA + ¬ CH , which shows that a star Lindelöf, first countable and normal space may not have countable extent.

On ordinals accessible by infinitary languages

Saharon Shelah, Pauli Väisänen, Jouko Väänänen (2005)

Fundamenta Mathematicae

Similarity:

Let λ be an infinite cardinal number. The ordinal number δ(λ) is the least ordinal γ such that if ϕ is any sentence of L λ ω , with a unary predicate D and a binary predicate ≺, and ϕ has a model ℳ with D , a well-ordering of type ≥ γ, then ϕ has a model ℳ ’ where D ' , ' is non-well-ordered. One of the interesting properties of this number is that the Hanf number of L λ ω is exactly δ ( λ ) . It was proved in [BK71] that if ℵ₀ < λ < κ a r e r e g u l a r c a r d i n a l n u m b e r s , t h e n t h e r e i s a f o r c i n g e x t e n s i o n , p r e s e r v i n g c o f i n a l i t i e s , s u c h t h a t i n t h e e x t e n s i o n 2λ = κ a n d δ ( λ ) < λ . W e i m p r o v e t h i s r e s u l t b y p r o v i n g t h e f o l l o w i n g : S u p p o s e < λ < θ κ a r e c a r d i n a l n u m b e r s s u c h t h a t λ < λ = λ ; ∙ cf(θ) ≥ λ⁺ and μ λ < θ whenever μ < θ; ∙ κ λ = κ . Then there...

More reflections on compactness

Lúcia R. Junqueira, Franklin D. Tall (2003)

Fundamenta Mathematicae

Similarity:

We consider the question of when X M = X , where X M is the elementary submodel topology on X ∩ M, especially in the case when X M is compact.

Characterizations of z -Lindelöf spaces

Ahmad Al-Omari, Takashi Noiri (2017)

Archivum Mathematicum

Similarity:

A topological space ( X , τ ) is said to be z -Lindelöf  [1] if every cover of X by cozero sets of ( X , τ ) admits a countable subcover. In this paper, we obtain new characterizations and preservation theorems of z -Lindelöf spaces.

On subcompactness and countable subcompactness of metrizable spaces in ZF

Kyriakos Keremedis (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We show in ZF that: (i) Every subcompact metrizable space is completely metrizable, and every completely metrizable space is countably subcompact. (ii) A metrizable space 𝐗 = ( X , T ) is countably compact if and only if it is countably subcompact relative to T . (iii) For every metrizable space 𝐗 = ( X , T ) , the following are equivalent: (a) 𝐗 is compact; (b) for every open filter of 𝐗 , { F ¯ : F } ; (c) 𝐗 is subcompact relative to T . We also show: (iv) The negation of each of the statements, (a) every countably subcompact...