Displaying similar documents to “Unified quantum invariants and their refinements for homology 3-spheres with 2-torsion”

Knot theory with the Lorentz group

João Faria Martins (2005)

Fundamenta Mathematicae

Similarity:

We analyse perturbative expansions of the invariants defined from unitary representations of the Quantum Lorentz Group in two different ways, namely using the Kontsevich Integral and weight systems, and the R-matrix in the Quantum Lorentz Group defined by Buffenoir and Roche. The two formulations are proved to be equivalent; and they both yield ℂ[[h]]h-valued knot invariants related with the Melvin-Morton expansion of the Coloured Jones Polynomial.

Link invariants from finite racks

Sam Nelson (2014)

Fundamenta Mathematicae

Similarity:

We define ambient isotopy invariants of oriented knots and links using the counting invariants of framed links defined by finite racks. These invariants reduce to the usual quandle counting invariant when the rack in question is a quandle. We are able to further enhance these counting invariants with 2-cocycles from the coloring rack's second rack cohomology satisfying a new degeneracy condition which reduces to the usual case for quandles.

A gauge-field approach to 3- and 4-manifold invariants

Bogusław Broda (1997)

Banach Center Publications

Similarity:

An approach to construction of topological invariants of the Reshetikhin-Turaev-Witten type of 3- and 4-dimensional manifolds in the framework of SU(2) Chern-Simons gauge theory and its hidden (quantum) gauge symmetry is presented.

The reduction of quantum invariants of 4-thickenings

Ivelina Bobtcheva, Frank Quinn (2005)

Fundamenta Mathematicae

Similarity:

We study the sensibility of an invariant of 2-dimensional CW complexes in the case when it comes as a reduction (through a change of ring) of a modular invariant of 4-dimensional thickenings of such complexes: it is shown that if the Euler characteristic of the 2-complex is greater than or equal to 1, its invariant depends only on homology. To see what is happening when the Euler characteristic is smaller than 1, we use ideas of Kerler and construct, from any tortile category, an invariant...

When is a quantum space not a group?

Piotr Mikołaj Sołtan (2010)

Banach Center Publications

Similarity:

We give a survey of techniques from quantum group theory which can be used to show that some quantum spaces (objects of the category dual to the category of C*-algebras) do not admit any quantum group structure. We also provide a number of examples which include some very well known quantum spaces. Our tools include several purely quantum group theoretical results as well as study of existence of characters and traces on C*-algebras describing the considered quantum spaces as well as...

An introduction to quantum annealing

Diego de Falco, Dario Tamascelli (2011)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

Similarity:

Quantum annealing, or quantum stochastic optimization, is a classical randomized algorithm which provides good heuristics for the solution of hard optimization problems. The algorithm, suggested by the behaviour of quantum systems, is an example of proficuous cross contamination between classical and quantum computer science. In this survey paper we illustrate how hard combinatorial problems are tackled by quantum computation and present some examples of the heuristics provided by quantum...

Contractible quantum Arens-Michael algebras

Nina V. Volosova (2010)

Banach Center Publications

Similarity:

We consider quantum analogues of locally convex spaces in terms of the non-coordinate approach. We introduce the notions of a quantum Arens-Michael algebra and a quantum polynormed module, and also quantum versions of projectivity and contractibility. We prove that a quantum Arens-Michael algebra is contractible if and only if it is completely isomorphic to a Cartesian product of full matrix C*-algebras. Similar results in the framework of traditional (non-quantum) approach are established,...