The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The number of L κ -equivalent nonisomorphic models for κ weakly compact”

Characterizing the powerset by a complete (Scott) sentence

Ioannis Souldatos (2013)

Fundamenta Mathematicae

Similarity:

This paper is part II of a study on cardinals that are characterizable by a Scott sentence, continuing previous work of the author. A cardinal κ is characterized by a Scott sentence ϕ if ϕ has a model of size κ, but no model of size κ⁺. The main question in this paper is the following: Are the characterizable cardinals closed under the powerset operation? We prove that if β is characterized by a Scott sentence, then 2 β + β is (homogeneously) characterized by a Scott sentence, for all 0 <...

Constructibility in Ackermann's set theory

C. Alkor

Similarity:

CONTENTSIntroduction......................... 5Section I. Preliminaries............ 6 § 1. Notation..................... 6 § 2. Ackermann’s set theory and some extensions................. 7 § 3. Absoluteness............................................... 8 § 4. Ordinals................................................... 9 § 5. Reflection principles...................................... 10Section 2. The usual notion of constructibility.............. 11 § 1. General considerations about...

Uncountable cardinals have the same monadic ∀₁¹ positive theory over large sets

Athanassios Tzouvaras (2004)

Fundamenta Mathematicae

Similarity:

We show that uncountable cardinals are indistinguishable by sentences of the monadic second-order language of order of the form (∀X)ϕ(X) and (∃X)ϕ(X), for ϕ positive in X and containing no set-quantifiers, when the set variables range over large (= cofinal) subsets of the cardinals. This strengthens the result of Doner-Mostowski-Tarski [3] that (κ,∈), (λ,∈) are elementarily equivalent when κ, λ are uncountable. It follows that we can consistently postulate that the structures ( 2 κ , [ 2 κ ] > κ , < ) , ( 2 λ , [ 2 λ ] > λ , < ) are...

On ordinals accessible by infinitary languages

Saharon Shelah, Pauli Väisänen, Jouko Väänänen (2005)

Fundamenta Mathematicae

Similarity:

Let λ be an infinite cardinal number. The ordinal number δ(λ) is the least ordinal γ such that if ϕ is any sentence of L λ ω , with a unary predicate D and a binary predicate ≺, and ϕ has a model ℳ with D , a well-ordering of type ≥ γ, then ϕ has a model ℳ ’ where D ' , ' is non-well-ordered. One of the interesting properties of this number is that the Hanf number of L λ ω is exactly δ ( λ ) . It was proved in [BK71] that if ℵ₀ < λ < κ a r e r e g u l a r c a r d i n a l n u m b e r s , t h e n t h e r e i s a f o r c i n g e x t e n s i o n , p r e s e r v i n g c o f i n a l i t i e s , s u c h t h a t i n t h e e x t e n s i o n 2λ = κ a n d δ ( λ ) < λ . W e i m p r o v e t h i s r e s u l t b y p r o v i n g t h e f o l l o w i n g : S u p p o s e < λ < θ κ a r e c a r d i n a l n u m b e r s s u c h t h a t λ < λ = λ ; ∙ cf(θ) ≥ λ⁺ and μ λ < θ whenever μ < θ; ∙ κ λ = κ . Then there...

Counting models of set theory

Ali Enayat (2002)

Fundamenta Mathematicae

Similarity:

Let T denote a completion of ZF. We are interested in the number μ(T) of isomorphism types of countable well-founded models of T. Given any countable order type τ, we are also interested in the number μ(T,τ) of isomorphism types of countable models of T whose ordinals have order type τ. We prove: (1) Suppose ZFC has an uncountable well-founded model and κ ω , , 2 . There is some completion T of ZF such that μ(T) = κ. (2) If α <ω₁ and μ(T,α) > ℵ₀, then μ ( T , α ) = 2 . (3) If α < ω₁ and T ⊢ V ≠ OD,...

On the structure of the set of higher order spreading models

Bünyamin Sarı, Konstantinos Tyros (2014)

Studia Mathematica

Similarity:

We generalize some results concerning the classical notion of a spreading model to spreading models of order ξ. Among other results, we prove that the set S M ξ w ( X ) of ξ-order spreading models of a Banach space X generated by subordinated weakly null ℱ-sequences endowed with the pre-partial order of domination is a semilattice. Moreover, if S M ξ w ( X ) contains an increasing sequence of length ω then it contains an increasing sequence of length ω₁. Finally, if S M ξ w ( X ) is uncountable, then it contains an antichain...

Locally Σ₁-definable well-orders of H(κ⁺)

Peter Holy, Philipp Lücke (2014)

Fundamenta Mathematicae

Similarity:

Given an uncountable cardinal κ with κ = κ < κ and 2 κ regular, we show that there is a forcing that preserves cofinalities less than or equal to 2 κ and forces the existence of a well-order of H(κ⁺) that is definable over ⟨H(κ⁺),∈⟩ by a Σ₁-formula with parameters. This shows that, in contrast to the case "κ = ω", the existence of a locally definable well-order of H(κ⁺) of low complexity is consistent with failures of the GCH at κ. We also show that the forcing mentioned above introduces a Bernstein...

Existentially closed II₁ factors

Ilijas Farah, Isaac Goldbring, Bradd Hart, David Sherman (2016)

Fundamenta Mathematicae

Similarity:

We examine the properties of existentially closed ( ω -embeddable) II₁ factors. In particular, we use the fact that every automorphism of an existentially closed ( ω -embeddable) II₁ factor is approximately inner to prove that Th() is not model-complete. We also show that Th() is complete for both finite and infinite forcing and use the latter result to prove that there exist continuum many nonisomorphic existentially closed models of Th().

Another ⋄-like principle

Michael Hrušák (2001)

Fundamenta Mathematicae

Similarity:

A new ⋄-like principle consistent with the negation of the Continuum Hypothesis is introduced and studied. It is shown that ¬ is consistent with CH and that in many models of = ω₁ the principle holds. As implies that there is a MAD family of size ℵ₁ this provides a partial answer to a question of J. Roitman who asked whether = ω₁ implies = ω₁. It is proved that holds in any model obtained by adding a single Laver real, answering a question of J. Brendle who asked whether = ω₁...

More on the Ehrenfeucht-Fraisse game of length ω₁

Tapani Hyttinen, Saharon Shelah, Jouko Vaananen (2002)

Fundamenta Mathematicae

Similarity:

By results of [9] there are models and for which the Ehrenfeucht-Fraïssé game of length ω₁, E F G ω ( , ) , is non-determined, but it is consistent relative to the consistency of a measurable cardinal that no such models have cardinality ≤ ℵ₂. We now improve the work of [9] in two ways. Firstly, we prove that the consistency strength of the statement “CH and E F G ω ( , ) is determined for all models and of cardinality ℵ₂” is that of a weakly compact cardinal. On the other hand, we show that if 2 < 2 , T is a countable...

Definable orthogonality classes in accessible categories are small

Joan Bagaria, Carles Casacuberta, A. R. D. Mathias, Jiří Rosický (2015)

Journal of the European Mathematical Society

Similarity:

We lower substantially the strength of the assumptions needed for the validity of certain results in category theory and homotopy theory which were known to follow from Vopěnka’s principle. We prove that the necessary large-cardinal hypotheses depend on the complexity of the formulas defining the given classes, in the sense of the Lévy hierarchy. For example, the statement that, for a class 𝒮 of morphisms in a locally presentable category 𝒞 of structures, the orthogonal class of objects...

Higher order spreading models

S. A. Argyros, V. Kanellopoulos, K. Tyros (2013)

Fundamenta Mathematicae

Similarity:

We introduce higher order spreading models associated to a Banach space X. Their definition is based on ℱ-sequences ( x s ) s with ℱ a regular thin family and on plegma families. We show that the higher order spreading models of a Banach space X form an increasing transfinite hierarchy ( ξ ( X ) ) ξ < ω . Each ξ ( X ) contains all spreading models generated by ℱ-sequences ( x s ) s with order of ℱ equal to ξ. We also study the fundamental properties of this hierarchy.

Level by level equivalence and the number of normal measures over P κ ( λ )

Arthur W. Apter (2007)

Fundamenta Mathematicae

Similarity:

We construct two models for the level by level equivalence between strong compactness and supercompactness in which if κ is λ supercompact and λ ≥ κ is regular, we are able to determine exactly the number of normal measures P κ ( λ ) carries. In the first of these models, P κ ( λ ) carries 2 2 [ λ ] < κ many normal measures, the maximal number. In the second of these models, P κ ( λ ) carries 2 2 [ λ ] < κ many normal measures, except if κ is a measurable cardinal which is not a limit of measurable cardinals. In this case, κ (and...

Embedding orders into the cardinals with D C κ

Asaf Karagila (2014)

Fundamenta Mathematicae

Similarity:

Jech proved that every partially ordered set can be embedded into the cardinals of some model of ZF. We extend this result to show that every partially ordered set can be embedded into the cardinals of some model of Z F + D C < κ for any regular κ. We use this theorem to show that for all κ, the assumption of D C κ does not entail that there are no decreasing chains of cardinals. We also show how to extend the result to and embed into the cardinals a proper class which is definable over the ground model....

Coloring ordinals by reals

Jörg Brendle, Sakaé Fuchino (2007)

Fundamenta Mathematicae

Similarity:

We study combinatorial principles we call the Homogeneity Principle HP(κ) and the Injectivity Principle IP(κ,λ) for regular κ > ℵ₁ and λ ≤ κ which are formulated in terms of coloring the ordinals < κ by reals. These principles are strengthenings of C s ( κ ) and F s ( κ ) of I. Juhász, L. Soukup and Z. Szentmiklóssy. Generalizing their results, we show e.g. that IP(ℵ₂,ℵ₁) (hence also IP(ℵ₂,ℵ₂) as well as HP(ℵ₂)) holds in a generic extension of a model of CH by Cohen forcing, and IP(ℵ₂,ℵ₂) (hence...

Generic extensions of models of ZFC

Lev Bukovský (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The paper contains a self-contained alternative proof of my Theorem in Characterization of generic extensions of models of set theory, Fund. Math. 83 (1973), 35–46, saying that for models M N of ZFC with same ordinals, the condition A p r M , N ( κ ) implies that N is a κ -C.C. generic extension of M .

Superstability in simple finitary AECs

Tapani Hyttinen, Meeri Kesälä (2007)

Fundamenta Mathematicae

Similarity:

We continue the study of finitary abstract elementary classes beyond ℵ₀-stability. We suggest a possible notion of superstability for simple finitary AECs, and derive from this notion several good properties for independence. We also study constructible models and the behaviour of Galois types and weak Lascar strong types in this context. We show that superstability is implied by a-categoricity in a suitable cardinal. As an application we prove the following theorem: Assume that ( , ) is...

Weak precompactness and property (V*) in spaces of compact operators

Ioana Ghenciu (2015)

Colloquium Mathematicae

Similarity:

We give sufficient conditions for subsets of compact operators to be weakly precompact. Let L w * ( E * , F ) (resp. K w * ( E * , F ) ) denote the set of all w* - w continuous (resp. w* - w continuous compact) operators from E* to F. We prove that if H is a subset of K w * ( E * , F ) such that H(x*) is relatively weakly compact for each x* ∈ E* and H*(y*) is weakly precompact for each y* ∈ F*, then H is weakly precompact. We also prove the following results: If E has property (wV*) and F has property (V*), then K w * ( E * , F ) has property (wV*). Suppose...

Reflecting character and pseudocharacter

Lucia R. Junqueira, Alberto M. E. Levi (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We say that a cardinal function φ reflects an infinite cardinal κ , if given a topological space X with φ ( X ) κ , there exists Y [ X ] κ with φ ( Y ) κ . We investigate some problems, discussed by Hodel and Vaughan in Reflection theorems for cardinal functions, Topology Appl. 100 (2000), 47–66, and Juhász in Cardinal functions and reflection, Topology Atlas Preprint no. 445, 2000, related to the reflection for the cardinal functions character and pseudocharacter. Among other results, we present some new equivalences...

Indestructible colourings and rainbow Ramsey theorems

Lajos Soukup (2009)

Fundamenta Mathematicae

Similarity:

We show that if a colouring c establishes ω₂ ↛ [(ω₁:ω)]² then c establishes this negative partition relation in each Cohen-generic extension of the ground model, i.e. this property of c is Cohen-indestructible. This result yields a negative answer to a question of Erdős and Hajnal: it is consistent that GCH holds and there is a colouring c:[ω₂]² → 2 establishing ω₂ ↛ [(ω₁:ω)]₂ such that some colouring g:[ω₁]² → 2 does not embed into c. It is also consistent that 2 ω is arbitrarily large,...

On sentences provable in impredicative extensions of theories

Zygmunt Ratajczyk

Similarity:

CONTENTS0. Introduction.......................................................................... 51. Preliminaries............................................................................... 72. Basic facts to be used in the sequel....................................... 113. Predicates OD(.,.) and CL(.,.).................................................... 174. Predicate Sels............................................................................. 185. Strong n 1 -collection...........................................................

Propositional extensions of L ω 1 ω

Richard Gostanian, Karel Hrbacek

Similarity:

CONTENTS0. Preliminaries....................................................................... 71. Adding propositional connectives to L ω 1 ω ............... 82. The propositional part of L ω 1 ω (S)............................. 103. The operation S and the Boolean algebra B S ............... 114. General model-theoretic properties of L ω 1 ω (S)...... 175. Hanf number computations...................................................... 226. Negative results for L ω 1 ω (S)...........................................

L -limited-like properties on Banach spaces

Ioana Ghenciu (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We study weakly precompact sets and operators. We show that an operator is weakly precompact if and only if its adjoint is pseudo weakly compact. We study Banach spaces with the p - L -limited * and the p -(SR * ) properties and characterize these classes of Banach spaces in terms of p - L -limited * and p -Right * subsets. The p - L -limited * property is studied in some spaces of operators.

Weakly null sequences with upper estimates

Daniel Freeman (2008)

Studia Mathematica

Similarity:

We prove that if ( v i ) is a seminormalized basic sequence and X is a Banach space such that every normalized weakly null sequence in X has a subsequence that is dominated by ( v i ) , then there exists a uniform constant C ≥ 1 such that every normalized weakly null sequence in X has a subsequence that is C-dominated by ( v i ) . This extends a result of Knaust and Odell, who proved this for the cases in which ( v i ) is the standard basis for p or c₀.

Cardinal sequences of length < ω₂ under GCH

István Juhász, Lajos Soukup, William Weiss (2006)

Fundamenta Mathematicae

Similarity:

Let (α) denote the class of all cardinal sequences of length α associated with compact scattered spaces (or equivalently, superatomic Boolean algebras). Also put λ ( α ) = s ( α ) : s ( 0 ) = λ = m i n [ s ( β ) : β < α ] . We show that f ∈ (α) iff for some natural number n there are infinite cardinals λ i > λ > . . . > λ n - 1 and ordinals α , . . . , α n - 1 such that α = α + + α n - 1 and f = f f . . . f n - 1 where each f i λ i ( α i ) . Under GCH we prove that if α < ω₂ then (i) ω ( α ) = s α ω , ω : s ( 0 ) = ω ; (ii) if λ > cf(λ) = ω, λ ( α ) = s α λ , λ : s ( 0 ) = λ , s - 1 λ i s ω - c l o s e d i n α ; (iii) if cf(λ) = ω₁, λ ( α ) = s α λ , λ : s ( 0 ) = λ , s - 1 λ i s ω - c l o s e d a n d s u c c e s s o r - c l o s e d i n α ; (iv) if cf(λ) > ω₁, λ ( α ) = α λ . This yields a complete characterization of the classes (α) for all...

Internally club and approachable for larger structures

John Krueger (2008)

Fundamenta Mathematicae

Similarity:

We generalize the notion of a fat subset of a regular cardinal κ to a fat subset of P κ ( X ) , where κ ⊆ X. Suppose μ < κ, μ < μ = μ , and κ is supercompact. Then there is a generic extension in which κ = μ⁺⁺, and for all regular λ ≥ μ⁺⁺, there are stationarily many N in [ H ( λ ) ] μ which are internally club but not internally approachable.