The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Stable cohomotopy groups of compact spaces”

Borsuk-Sieklucki theorem in cohomological dimension theory

Margareta Boege, Jerzy Dydak, Rolando Jiménez, Akira Koyama, Evgeny V. Shchepin (2002)

Fundamenta Mathematicae

Similarity:

The Borsuk-Sieklucki theorem says that for every uncountable family X α α A of n-dimensional closed subsets of an n-dimensional ANR-compactum, there exist α ≠ β such that d i m ( X α X β ) = n . In this paper we show a cohomological version of that theorem: Theorem. Suppose a compactum X is c l c n + 1 , where n ≥ 1, and G is an Abelian group. Let X α α J be an uncountable family of closed subsets of X. If d i m G X = d i m G X α = n for all α ∈ J, then d i m G ( X α X β ) = n for some α ≠ β. For G being a countable principal ideal domain the above result was proved by Choi...

Stable solutions of Δ u = f ( u ) in N

Louis Dupaigne, Alberto Farina (2010)

Journal of the European Mathematical Society

Similarity:

Several Liouville-type theorems are presented for stable solutions of the equation - Δ u = f ( u ) in N , where f > 0 is a general convex, nondecreasing function. Extensions to solutions which are merely stable outside a compact set are discussed.

Maps with dimensionally restricted fibers

Vesko Valov (2011)

Colloquium Mathematicae

Similarity:

We prove that if f: X → Y is a closed surjective map between metric spaces such that every fiber f - 1 ( y ) belongs to a class S of spaces, then there exists an F σ -set A ⊂ X such that A ∈ S and d i m f - 1 ( y ) A = 0 for all y ∈ Y. Here, S can be one of the following classes: (i) M: e-dim M ≤ K for some CW-complex K; (ii) C-spaces; (iii) weakly infinite-dimensional spaces. We also establish that if S = M: dim M ≤ n, then dim f ∆ g ≤ 0 for almost all g C ( X , n + 1 ) .

Connected sequences of stable derived functors and their applications

Daniel Simson, Andrzej Tyc

Similarity:

CONTENTS1. Introduction........................................................................................................................................................................................................ 52. Category of complexes.................................................................................................................................................................................... 73. Left stable derived functors of covariant functors..........................................................................................................................................

Fredholm spectrum and growth of cohomology groups

Jörg Eschmeier (2008)

Studia Mathematica

Similarity:

Let T ∈ L(E)ⁿ be a commuting tuple of bounded linear operators on a complex Banach space E and let σ F ( T ) = σ ( T ) σ e ( T ) be the non-essential spectrum of T. We show that, for each connected component M of the manifold R e g ( σ F ( T ) ) of all smooth points of σ F ( T ) , there is a number p ∈ 0, ..., n such that, for each point z ∈ M, the dimensions of the cohomology groups H p ( ( z - T ) k , E ) grow at least like the sequence ( k d ) k 1 with d = dim M.

Universal acyclic resolutions for arbitrary coefficient groups

Michael Levin (2003)

Fundamenta Mathematicae

Similarity:

We prove that for every compactum X and every integer n ≥ 2 there are a compactum Z of dimension ≤ n+1 and a surjective U V n - 1 -map r: Z → X such that for every abelian group G and every integer k ≥ 2 such that d i m G X k n we have d i m G Z k and r is G-acyclic.

On dimensionally restricted maps

H. Murat Tuncali, Vesko Valov (2002)

Fundamenta Mathematicae

Similarity:

Let f: X → Y be a closed n-dimensional surjective map of metrizable spaces. It is shown that if Y is a C-space, then: (1) the set of all maps g: X → ⁿ with dim(f △ g) = 0 is uniformly dense in C(X,ⁿ); (2) for every 0 ≤ k ≤ n-1 there exists an F σ -subset A k of X such that d i m A k k and the restriction f | ( X A k ) is (n-k-1)-dimensional. These are extensions of theorems by Pasynkov and Toruńczyk, respectively, obtained for finite-dimensional spaces. A generalization of a result due to Dranishnikov and Uspenskij...

Convergence to stable laws and a local limit theorem for stochastic recursions

Mariusz Mirek (2010)

Colloquium Mathematicae

Similarity:

We consider the random recursion X x = M X n - 1 x + Q + N ( X n - 1 x ) , where x ∈ ℝ and (Mₙ,Qₙ,Nₙ) are i.i.d., Qₙ has a heavy tail with exponent α > 0, the tail of Mₙ is lighter and N ( X n - 1 x ) is smaller at infinity, than M X n - 1 x . Using the asymptotics of the stationary solutions we show that properly normalized Birkhoff sums S x = k = 0 n X k x converge weakly to an α-stable law for α ∈ (0,2]. The related local limit theorem is also proved.

Some results on Poincaré sets

Min-wei Tang, Zhi-Yi Wu (2020)

Czechoslovak Mathematical Journal

Similarity:

It is known that a set H of positive integers is a Poincaré set (also called intersective set, see I. Ruzsa (1982)) if and only if dim ( X H ) = 0 , where X H : = x = n = 1 x n 2 n : x n { 0 , 1 } , x n x n + h = 0 for all n 1 , h H and dim denotes the Hausdorff dimension (see C. Bishop, Y. Peres (2017), Theorem 2.5.5). In this paper we study the set X H by replacing 2 with b > 2 . It is surprising that there are some new phenomena to be worthy of studying. We study them and give several examples to explain our results.

Simultaneous stabilization in A ( )

Raymond Mortini, Brett D. Wick (2009)

Studia Mathematica

Similarity:

We study the problem of simultaneous stabilization for the algebra A ( ) . Invertible pairs ( f j , g j ) , j = 1,..., n, in a commutative unital algebra are called simultaneously stabilizable if there exists a pair (α,β) of elements such that α f j + β g j is invertible in this algebra for j = 1,..., n. For n = 2, the simultaneous stabilization problem admits a positive solution for any data if and only if the Bass stable rank of the algebra is one. Since A ( ) has stable rank two, we are faced here with a different...

The canonical constructions of connections on total spaces of fibred manifolds

Włodzimierz M. Mikulski (2024)

Archivum Mathematicum

Similarity:

We classify classical linear connections A ( Γ , Λ , Θ ) on the total space Y of a fibred manifold Y M induced in a natural way by the following three objects: a general connection Γ in Y M , a classical linear connection Λ on M and a linear connection Θ in the vertical bundle V Y Y . The main result says that if dim ( M ) 3 and dim ( Y ) - dim ( M ) 3 then the natural operators A under consideration form the 17 dimensional affine space.

Noetherian loop spaces

Natàlia Castellana, Juan Crespo, Jérôme Scherer (2011)

Journal of the European Mathematical Society

Similarity:

The class of loop spaces of which the mod p cohomology is Noetherian is much larger than the class of p -compact groups (for which the mod p cohomology is required to be finite). It contains Eilenberg–Mac Lane spaces such as P and 3-connected covers of compact Lie groups. We study the cohomology of the classifying space B X of such an object and prove it is as small as expected, that is, comparable to that of B P . We also show that B X differs basically from the classifying space of a p -compact...

On stable currents in positively pinched curved hypersurfaces

Jintang Li (2003)

Colloquium Mathematicae

Similarity:

Let Mⁿ (n ≥ 3) be an n-dimensional complete hypersurface in a real space form N(c) (c ≥ 0). We prove that if the sectional curvature K M of M satisfies the following pinching condition: c + δ < K M c + 1 , where δ = 1/5 for n ≥ 4 and δ = 1/4 for n = 3, then there are no stable currents (or stable varifolds) in M. This is a positive answer to the well-known conjecture of Lawson and Simons.

Stabilization of monomial maps in higher codimension

Jan-Li Lin, Elizabeth Wulcan (2014)

Annales de l’institut Fourier

Similarity:

A monomial self-map f on a complex toric variety is said to be k -stable if the action induced on the 2 k -cohomology is compatible with iteration. We show that under suitable conditions on the eigenvalues of the matrix of exponents of f , we can find a toric model with at worst quotient singularities where f is k -stable. If f is replaced by an iterate one can find a k -stable model as soon as the dynamical degrees λ k of f satisfy λ k 2 &gt; λ k - 1 λ k + 1 . On the other hand, we give examples of monomial maps f , where...

Real deformations and invariants of map-germs

J. H. Rieger, M. A. S. Ruas, R. Wik Atique (2008)

Banach Center Publications

Similarity:

A stable deformation f t of a real map-germ f : , 0 p , 0 is said to be an M-deformation if all isolated stable (local and multi-local) singularities of its complexification f t are real. A related notion is that of a good real perturbation f t of f (studied e.g. by Mond and his coworkers) for which the homology of the image (for n < p) or discriminant (for n ≥ p) of f t coincides with that of f C t . The class of map germs having an M-deformation is, in some sense, much larger than the one having a good...

On pathwise uniqueness for stochastic differential equations driven by stable Lévy processes

Nicolas Fournier (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We study a one-dimensional stochastic differential equation driven by a stable Lévy process of order α with drift and diffusion coefficients b , σ . When α ( 1 , 2 ) , we investigate pathwise uniqueness for this equation. When α ( 0 , 1 ) , we study another stochastic differential equation, which is equivalent in law, but for which pathwise uniqueness holds under much weaker conditions. We obtain various results, depending on whether α ( 0 , 1 ) or α ( 1 , 2 ) and on whether the driving stable process is symmetric or not. Our...

A finiteness theorem for holomorphic Banach bundles

Jürgen Leiterer (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

Let E be a holomorphic Banach bundle over a compact complex manifold, which can be defined by a cocycle of holomorphic transition functions with values of the form id + K where K is compact. Assume that the characteristic fiber of E has the compact approximation property. Let n be the complex dimension of X and 0 q n . Then: If V X is a holomorphic vector bundle (of finite rank) with H q ( X , V ) = 0 , then dim H q ( X , V E ) &lt; . In particular, if dim H q ( X , 𝒪 ) = 0 , then dim H q ( X , E ) &lt; .

Taylor towers of symmetric and exterior powers

Brenda Johnson, Randy McCarthy (2008)

Fundamenta Mathematicae

Similarity:

We study the Taylor towers of the nth symmetric and exterior power functors, Spⁿ and Λⁿ. We obtain a description of the layers of the Taylor towers, D k S p and D k Λ , in terms of the first terms in the Taylor towers of S p t and Λ t for t < n. The homology of these first terms is related to the stable derived functors (in the sense of Dold and Puppe) of S p t and Λ t . We use stable derived functor calculations of Dold and Puppe to determine the lowest nontrivial homology groups for D k S p and D k Λ .

On the Separation Dimension of K ω

Yasunao Hattori, Jan van Mill (2013)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We prove that t r t K ω > ω + 1 , where trt stands for the transfinite extension of Steinke’s separation dimension. This answers a question of Chatyrko and Hattori.

Bounded cohomology and isometry groups of hyperbolic spaces

Ursula Hamenstädt (2008)

Journal of the European Mathematical Society

Similarity:

Let X be an arbitrary hyperbolic geodesic metric space and let Γ be a countable subgroup of the isometry group Iso ( X ) of X . We show that if Γ is non-elementary and weakly acylindrical (this is a weak properness condition) then the second bounded cohomology groups H b 2 ( Γ , ) , H b 2 ( Γ , p ( Γ ) ) ( 1 < p < ) are infinite dimensional. Our result holds for example for any subgroup of the mapping class group of a non-exceptional surface of finite type not containing a normal subgroup which virtually splits as a direct...

Maximal non valuation domains in an integral domain

Rahul Kumar, Atul Gaur (2020)

Czechoslovak Mathematical Journal

Similarity:

Let R be a commutative ring with unity. The notion of maximal non valuation domain in an integral domain is introduced and characterized. A proper subring R of an integral domain S is called a maximal non valuation domain in S if R is not a valuation subring of S , and for any ring T such that R T S , T is a valuation subring of S . For a local domain S , the equivalence of an integrally closed maximal non VD in S and a maximal non local subring of S is established. The relation between dim ( R , S ) and...

The G -graded identities of the Grassmann Algebra

Lucio Centrone (2016)

Archivum Mathematicum

Similarity:

Let G be a finite abelian group with identity element 1 G and L = g G L g be an infinite dimensional G -homogeneous vector space over a field of characteristic 0 . Let E = E ( L ) be the Grassmann algebra generated by L . It follows that E is a G -graded algebra. Let | G | be odd, then we prove that in order to describe any ideal of G -graded identities of E it is sufficient to deal with G ' -grading, where | G ' | | G | , dim F L 1 G ' = and dim F L g ' < if g ' 1 G ' . In the same spirit of the case | G | odd, if | G | is even it is sufficient to study only those G -gradings...

Cohomological dimension filtration and annihilators of top local cohomology modules

Ali Atazadeh, Monireh Sedghi, Reza Naghipour (2015)

Colloquium Mathematicae

Similarity:

Let denote an ideal in a Noetherian ring R, and M a finitely generated R-module. We introduce the concept of the cohomological dimension filtration = M i i = 0 c , where c = cd(,M) and M i denotes the largest submodule of M such that c d ( , M i ) i . Some properties of this filtration are investigated. In particular, if (R,) is local and c = dim M, we are able to determine the annihilator of the top local cohomology module H c ( M ) , namely A n n R ( H c ( M ) ) = A n n R ( M / M c - 1 ) . As a consequence, there exists an ideal of R such that A n n R ( H c ( M ) ) = A n n R ( M / H ( M ) ) . This generalizes the...