Displaying similar documents to “Logarithmic inequalities for second-order Riesz transforms and related Fourier multipliers”

Unconditionality, Fourier multipliers and Schur multipliers

Cédric Arhancet (2012)

Colloquium Mathematicae

Similarity:

Let G be an infinite locally compact abelian group and X be a Banach space. We show that if every bounded Fourier multiplier T on L²(G) has the property that T I d X is bounded on L²(G,X) then X is isomorphic to a Hilbert space. Moreover, we prove that if 1 < p < ∞, p ≠ 2, then there exists a bounded Fourier multiplier on L p ( G ) which is not completely bounded. Finally, we examine unconditionality from the point of view of Schur multipliers. More precisely, we give several necessary and sufficient...

Absolute convergence of multiple Fourier integrals

Yurii Kolomoitsev, Elijah Liflyand (2013)

Studia Mathematica

Similarity:

Various new sufficient conditions for representation of a function of several variables as an absolutely convergent Fourier integral are obtained. The results are given in terms of L p integrability of the function and its partial derivatives, each with a different p. These p are subject to certain relations known earlier only for some particular cases. Sharpness and applications of the results obtained are also discussed.

Multilinear Fourier multipliers with minimal Sobolev regularity, I

Loukas Grafakos, Hanh Van Nguyen (2016)

Colloquium Mathematicae

Similarity:

We find optimal conditions on m-linear Fourier multipliers that give rise to bounded operators from products of Hardy spaces H p k , 0 < p k 1 , to Lebesgue spaces L p . These conditions are expressed in terms of L²-based Sobolev spaces with sharp indices within the classes of multipliers we consider. Our results extend those obtained in the linear case (m = 1) by Calderón and Torchinsky (1977) and in the bilinear case (m = 2) by Miyachi and Tomita (2013). We also prove a coordinate-type Hörmander integral...

A multiplier theorem for Fourier series in several variables

Nakhle Asmar, Florence Newberger, Saleem Watson (2006)

Colloquium Mathematicae

Similarity:

We define a new type of multiplier operators on L p ( N ) , where N is the N-dimensional torus, and use tangent sequences from probability theory to prove that the operator norms of these multipliers are independent of the dimension N. Our construction is motivated by the conjugate function operator on L p ( N ) , to which the theorem applies as a particular example.

Variations on Bochner-Riesz multipliers in the plane

Daniele Debertol (2006)

Studia Mathematica

Similarity:

We consider the multiplier m μ defined for ξ ∈ ℝ by m μ ( ξ ) ( ( 1 - ξ ² - ξ ² ) / ( 1 - ξ ) ) μ 1 D ( ξ ) , D denoting the open unit disk in ℝ. Given p ∈ ]1,∞[, we show that the optimal range of μ’s for which m μ is a Fourier multiplier on L p is the same as for Bochner-Riesz means. The key ingredient is a lemma about some modifications of Bochner-Riesz means inside convex regions with smooth boundary and non-vanishing curvature, providing a more flexible version of a result by Iosevich et al. [Publ. Mat. 46 (2002)]. As an application, we show...

Fourier coefficients of continuous functions and a class of multipliers

Serguei V. Kislyakov (1988)

Annales de l'institut Fourier

Similarity:

If x is a bounded function on Z , the multiplier with symbol x (denoted by M x ) is defined by ( M x f ) ^ = x f ^ , f L 2 ( T ) . We give some conditions on x ensuring the “interpolation inequality” M x f L p C f L 1 α M x f L q 1 - α (here 1 &lt; p &lt; q and α = α ( p , q , x ) is between 0 and 1). In most cases considered M x fails to have stronger L 1 -regularity properties (e.g. fails to be of weak type (1,1)). The results are applied to prove that for many sets E Z every positive sequence in 2 ( E ) can be majorized by the sequence { | f ^ ( n ) | } n E for some continuous funtion f with spectrum...

A variation norm Carleson theorem

Richard Oberlin, Andreas Seeger, Terence Tao, Christoph Thiele, James Wright (2012)

Journal of the European Mathematical Society

Similarity:

We strengthen the Carleson-Hunt theorem by proving L p estimates for the r -variation of the partial sum operators for Fourier series and integrals, for r > 𝚖𝚊𝚡 { p ' , 2 } . Four appendices are concerned with transference, a variation norm Menshov-Paley-Zygmund theorem, and applications to nonlinear Fourier transforms and ergodic theory.

Multipliers of the Hardy space H¹ and power bounded operators

Gilles Pisier (2001)

Colloquium Mathematicae

Similarity:

We study the space of functions φ: ℕ → ℂ such that there is a Hilbert space H, a power bounded operator T in B(H) and vectors ξ, η in H such that φ(n) = ⟨Tⁿξ,η⟩. This implies that the matrix ( φ ( i + j ) ) i , j 0 is a Schur multiplier of B(ℓ₂) or equivalently is in the space (ℓ₁ ⊗̌ ℓ₁)*. We show that the converse does not hold, which answers a question raised by Peller [Pe]. Our approach makes use of a new class of Fourier multipliers of H¹ which we call “shift-bounded”. We show that there is a φ which...

Fourier multipliers for Hölder continuous functions and maximal regularity

Wolfgang Arendt, Charles Batty, Shangquan Bu (2004)

Studia Mathematica

Similarity:

Two operator-valued Fourier multiplier theorems for Hölder spaces are proved, one periodic, the other on the line. In contrast to the L p -situation they hold for arbitrary Banach spaces. As a consequence, maximal regularity in the sense of Hölder can be characterized by simple resolvent estimates of the underlying operator.

The Herz-Schur multiplier norm of sets satisfying the Leinert condition

Éric Ricard, Ana-Maria Stan (2011)

Colloquium Mathematicae

Similarity:

It is well known that in a free group , one has | | χ E | | M c b A ( ) 2 , where E is the set of all the generators. We show that the (completely) bounded multiplier norm of any set satisfying the Leinert condition depends only on its cardinality. Consequently, based on a result of Wysoczański, we obtain a formula for | | χ E | | M c b A ( ) .

Multipliers for the twisted Laplacian

E. K. Narayanan (2003)

Colloquium Mathematicae

Similarity:

We study ¹ - L p boundedness of certain multiplier transforms associated to the special Hermite operator.

Remark on the inequality of F. Riesz

W. Łenski (2005)

Banach Center Publications

Similarity:

We prove F. Riesz’ inequality assuming the boundedness of the norm of the first arithmetic mean of the functions | φ | p with p ≥ 2 instead of boundedness of the functions φₙ of an orthonormal system.

A strong convergence theorem for H¹(𝕋ⁿ)

Feng Dai (2006)

Studia Mathematica

Similarity:

Let ⁿ denote the usual n-torus and let S ̃ u δ ( f ) , u > 0, denote the Bochner-Riesz means of order δ > 0 of the Fourier expansion of f ∈ L¹(ⁿ). The main result of this paper states that for f ∈ H¹(ⁿ) and the critical index α: = (n-1)/2, l i m R 1 / l o g R 0 R ( | | S ̃ u α ( f ) - f | | H ¹ ( ) ) / ( u + 1 ) d u = 0 .

On the Hermite expansions of functions from the Hardy class

Rahul Garg, Sundaram Thangavelu (2010)

Studia Mathematica

Similarity:

Considering functions f on ℝⁿ for which both f and f̂ are bounded by the Gaussian e - 1 / 2 a | x | ² , 0 < a < 1, we show that their Fourier-Hermite coefficients have exponential decay. Optimal decay is obtained for O(n)-finite functions, thus extending a one-dimensional result of Vemuri.

L p boundedness of Riesz transforms for orthogonal polynomials in a general context

Liliana Forzani, Emanuela Sasso, Roberto Scotto (2015)

Studia Mathematica

Similarity:

Nowak and Stempak (2006) proposed a unified approach to the theory of Riesz transforms and conjugacy in the setting of multi-dimensional orthogonal expansions, and proved their boundedness on L². Following them, we give easy to check sufficient conditions for their boundedness on L p , 1 < p < ∞. We also discuss the symmetrized version of these transforms.

The Fourier transform in Lebesgue spaces

Erik Talvila (2025)

Czechoslovak Mathematical Journal

Similarity:

For each f L p ( ) ( 1 p < ) it is shown that the Fourier transform is the distributional derivative of a Hölder continuous function. For each p , a norm is defined so that the space of Fourier transforms is isometrically isomorphic to L p ( ) . There is an exchange theorem and inversion in norm.

Operational calculus and Fourier transform on Boehmians

V. Karunakaran, R. Roopkumar (2005)

Colloquium Mathematicae

Similarity:

We define various operations on the space of ultra Boehmians like multiplication with certain analytic functions which are Fourier transforms of compactly supported distributions, polynomials, and characters ( e i s t , s , t ) , translation, differentiation. We also prove that the Fourier transform on the space of ultra Boehmians has all the operational properties as in the classical theory.

Symmetric Bessel multipliers

Khadija Houissa, Mohamed Sifi (2012)

Colloquium Mathematicae

Similarity:

We study the L p -boundedness of linear and bilinear multipliers for the symmetric Bessel transform.

Sharp inequalities for Riesz transforms

Adam Osękowski (2014)

Studia Mathematica

Similarity:

We establish the following sharp local estimate for the family R j j = 1 d of Riesz transforms on d . For any Borel subset A of d and any function f : d , A | R j f ( x ) | d x C p | | f | | L p ( d ) | A | 1 / q , 1 < p < ∞. Here q = p/(p-1) is the harmonic conjugate to p, C p = [ 2 q + 2 Γ ( q + 1 ) / π q + 1 k = 0 ( - 1 ) k / ( 2 k + 1 ) q + 1 ] 1 / q , 1 < p < 2, and C p = [ 4 Γ ( q + 1 ) / π q k = 0 1 / ( 2 k + 1 ) q ] 1 / q , 2 ≤ p < ∞. This enables us to determine the precise values of the weak-type constants for Riesz transforms for 1 < p < ∞. The proof rests on appropriate martingale inequalities, which are of independent interest.

Bases in spaces of analytic germs

Michael Langenbruch (2012)

Annales Polonici Mathematici

Similarity:

We prove precise decomposition results and logarithmically convex estimates in certain weighted spaces of holomorphic germs near ℝ. These imply that the spaces have a basis and are tamely isomorphic to the dual of a power series space of finite type which can be calculated in many situations. Our results apply to the Gelfand-Shilov spaces S ¹ α and S α for α > 0 and to the spaces of Fourier hyperfunctions and of modified Fourier hyperfunctions.

On the order of magnitude of Walsh-Fourier transform

Bhikha Lila Ghodadra, Vanda Fülöp (2020)

Mathematica Bohemica

Similarity:

For a Lebesgue integrable complex-valued function f defined on + : = [ 0 , ) let f ^ be its Walsh-Fourier transform. The Riemann-Lebesgue lemma says that f ^ ( y ) 0 as y . But in general, there is no definite rate at which the Walsh-Fourier transform tends to zero. In fact, the Walsh-Fourier transform of an integrable function can tend to zero as slowly as we wish. Therefore, it is interesting to know for functions of which subclasses of L 1 ( + ) there is a definite rate at which the Walsh-Fourier transform tends...

Regularity properties of commutators and B M O -Triebel-Lizorkin spaces

Abdellah Youssfi (1995)

Annales de l'institut Fourier

Similarity:

In this paper we consider the regularity problem for the commutators ( [ b , R k ] ) 1 k n where b is a locally integrable function and ( R j ) 1 j n are the Riesz transforms in the n -dimensional euclidean space n . More precisely, we prove that these commutators ( [ b , R k ] ) 1 k n are bounded from L p into the Besov space B ˙ p s , p for 1 &lt; p &lt; + and 0 &lt; s &lt; 1 if and only if b is in the B M O -Triebel-Lizorkin space F ˙ s , p . The reduction of our result to the case p = 2 gives in particular that the commutators ( [ b , R k ] ) 1 k n are bounded form L 2 into the Sobolev space H ˙ s if and only if b ...

On the diametral dimension of weighted spaces of analytic germs

Michael Langenbruch (2016)

Studia Mathematica

Similarity:

We prove precise estimates for the diametral dimension of certain weighted spaces of germs of holomorphic functions defined on strips near ℝ. This implies a full isomorphic classification for these spaces including the Gelfand-Shilov spaces S ¹ α and S α for α > 0. Moreover we show that the classical spaces of Fourier hyperfunctions and of modified Fourier hyperfunctions are not isomorphic.

Uncertainty principles for integral operators

Saifallah Ghobber, Philippe Jaming (2014)

Studia Mathematica

Similarity:

The aim of this paper is to prove new uncertainty principles for integral operators with bounded kernel for which there is a Plancherel Theorem. The first of these results is an extension of Faris’s local uncertainty principle which states that if a nonzero function f L ² ( d , μ ) is highly localized near a single point then (f) cannot be concentrated in a set of finite measure. The second result extends the Benedicks-Amrein-Berthier uncertainty principle and states that a nonzero function f L ² ( d , μ ) and...