Displaying similar documents to “Two classes of almost Galois coverings for algebras”

Differential Galois Theory for an Exponential Extension of ( ( z ) )

Magali Bouffet (2003)

Bulletin de la Société Mathématique de France

Similarity:

In this paper we study the formal differential Galois group of linear differential equations with coefficients in an extension of ( ( z ) ) by an exponential of integral. We use results of factorization of differential operators with coefficients in such a field to give explicit generators of the Galois group. We show that we have very similar results to the case of ( ( z ) ) .

Quandle coverings and their Galois correspondence

Michael Eisermann (2014)

Fundamenta Mathematicae

Similarity:

This article establishes the algebraic covering theory of quandles. For every connected quandle Q with base point q ∈ Q, we explicitly construct a universal covering p: (Q̃,q̃̃) → (Q,q). This in turn leads us to define the algebraic fundamental group π ( Q , q ) : = A u t ( p ) = g A d j ( Q ) ' | q g = q , where Adj(Q) is the adjoint group of Q. We then establish the Galois correspondence between connected coverings of (Q,q) and subgroups of π₁(Q,q). Quandle coverings are thus formally analogous to coverings of topological spaces, and resemble...

Galois coverings and splitting properties of the ideal generated by halflines

Piotr Dowbor (2004)

Colloquium Mathematicae

Similarity:

Given a locally bounded k-category R and a group G A u t k ( R ) acting freely on R we study the properties of the ideal generated by a class of indecomposable locally finite-dimensional modules called halflines (Theorem 3.3). They are applied to prove that under certain circumstances the Galois covering reduction to stabilizers, for the Galois covering F: R → R/G, is strictly full (Theorems 1.5 and 4.2).

Non-orbicular modules for Galois coverings

Piotr Dowbor (2001)

Colloquium Mathematicae

Similarity:

Given a group G of k-linear automorphisms of a locally bounded k-category R, the problem of existence and construction of non-orbicular indecomposable R/G-modules is studied. For a suitable finite sequence B of G-atoms with a common stabilizer H, a representation embedding Φ B : I - s p r ( H ) m o d ( R / G ) , which yields large families of non-orbicular indecomposable R/G-modules, is constructed (Theorem 3.1). It is proved that if a G-atom B with infinite cyclic stabilizer admits a non-trivial left Kan extension B̃ with...

Polynomials over Q solving an embedding problem

Nuria Vila (1985)

Annales de l'institut Fourier

Similarity:

The fields defined by the polynomials constructed in E. Nart and the author in J. Number Theory 16, (1983), 6–13, Th. 2.1, with absolute Galois group the alternating group A n , can be embedded in any central extension of A n if and only if n 0 ( m o d 8 ) , or n 2 ( m o d 8 ) and n is a sum of two squares. Consequently, for theses values of n , every central extension of A n occurs as a Galois group over Q .

Some remarks on Hilbert-Speiser and Leopoldt fields of given type

James E. Carter (2007)

Colloquium Mathematicae

Similarity:

Let p be a rational prime, G a group of order p, and K a number field containing a primitive pth root of unity. We show that every tamely ramified Galois extension of K with Galois group isomorphic to G has a normal integral basis if and only if for every Galois extension L/K with Galois group isomorphic to G, the ring of integers O L in L is free as a module over the associated order L / K . We also give examples, some of which show that this result can still hold without the assumption that...

Random Galois extensions of Hilbertian fields

Lior Bary-Soroker, Arno Fehm (2013)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let L be a Galois extension of a countable Hilbertian field K . Although L need not be Hilbertian, we prove that an abundance of large Galois subextensions of L / K are.

Automorphic realization of residual Galois representations

Robert Guralnick, Michael Harris, Nicholas M. Katz (2010)

Journal of the European Mathematical Society

Similarity:

We show that it is possible in rather general situations to obtain a finite-dimensional modular representation ρ of the Galois group of a number field F as a constituent of one of the modular Galois representations attached to automorphic representations of a general linear group over F , provided one works “potentially.” The proof is based on a close study of the monodromy of the Dwork family of Calabi–Yau hypersurfaces; this in turn makes use of properties of rigid local systems and...

Quaternion extensions with restricted ramification

Peter Schmid (2014)

Acta Arithmetica

Similarity:

In any normal number field having Q₈, the quaternion group of order 8, as Galois group over the rationals, at least two finite primes must ramify. The classical example by Dedekind of such a field is extraordinary in that it is totally real and only the primes 2 and 3 are ramified. In this note we describe in detail all Q₈-fields over the rationals where only two (finite) primes are ramified. We also show that, for any integer n>3 and any prime p 1 ( m o d 2 n - 1 ) , there exist unique real and complex...

Overview of the differential Galois integrability conditions for non-homogeneous potentials

Andrzej J. Maciejewski, Maria Przybylska (2011)

Banach Center Publications

Similarity:

We report our recent results concerning integrability of Hamiltonian systems governed by Hamilton’s function of the form H = 1 / 2 i = 1 n p ² i + V ( q ) , where the potential V is a finite sum of homogeneous components. In this paper we show how to find, in the differential Galois framework, computable necessary conditions for the integrability of such systems. Our main result concerns potentials of the form V = V k + V K , where V k and V K are homogeneous functions of integer degrees k and K > k, respectively. We present examples...

Examples of polynomial identities distinguishing the Galois objects over finite-dimensional Hopf algebras

Christian Kassel (2013)

Annales mathématiques Blaise Pascal

Similarity:

We define polynomial H -identities for comodule algebras over a Hopf algebra  H and establish general properties for the corresponding T -ideals. In the case  H is a Taft algebra or the Hopf algebra  E ( n ) , we exhibit a finite set of polynomial H -identities which distinguish the Galois objects over  H up to isomorphism.

Counting discriminants of number fields

Henri Cohen, Francisco Diaz y Diaz, Michel Olivier (2006)

Journal de Théorie des Nombres de Bordeaux

Similarity:

For each transitive permutation group G on n letters with n 4 , we give without proof results, conjectures, and numerical computations on discriminants of number fields L of degree n over such that the Galois group of the Galois closure of L is isomorphic to G .

Two remarks on the inverse Galois problem for intersective polynomials

Jack Sonn (2009)

Journal de Théorie des Nombres de Bordeaux

Similarity:

A (monic) polynomial f ( x ) [ x ] is called if the congruence f ( x ) 0 mod m has a solution for all positive integers m . Call f ( x ) if it is intersective and has no rational root. It was proved by the author that every finite noncyclic solvable group G can be realized as the Galois group over of a nontrivially intersective polynomial (noncyclic is a necessary condition). Our first remark is the observation that the corresponding result for nonsolvable G reduces to the ordinary inverse Galois...