The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Linear derivations with rings of constants generated by linear forms”

On rings of constants of derivations in two variables in positive characteristic

Piotr Jędrzejewicz (2006)

Colloquium Mathematicae

Similarity:

Let k be a field of chracteristic p > 0. We describe all derivations of the polynomial algebra k[x,y], homogeneous with respect to a given weight vector, in particular all monomial derivations, with the ring of constants of the form k [ x p , y p , f ] , where f k [ x , y ] k [ x p , y p ] .

A note on linear derivations

Amit Patra (2024)

Czechoslovak Mathematical Journal

Similarity:

At first we prove some results on a general polynomial derivation using few results of linear derivation. Then we study the ring of constants of a linear derivation for some rings. We know that any linear derivation is a nonsimple derivation. In the last section we find the smallest integer w > 1 such that the polynomial ring in n variables is w -differentially simple, all w derivations are nonsimple and the w derivations set contains a linear derivation.

Posner's second theorem and annihilator conditions with generalized skew derivations

Vincenzo De Filippis, Feng Wei (2012)

Colloquium Mathematicae

Similarity:

Let be a prime ring of characteristic different from 2, r be its right Martindale quotient ring and be its extended centroid. Suppose that is a non-zero generalized skew derivation of and f(x₁,..., xₙ) is a non-central multilinear polynomial over with n non-commuting variables. If there exists a non-zero element a of such that a[ (f(r₁,..., rₙ)),f(r₁, ..., rₙ)] = 0 for all r₁, ..., rₙ ∈ , then one of the following holds: (a) there exists λ ∈ such that (x) = λx for all x ∈ ; (b) there...

An example of a simple derivation in two variables

Andrzej Nowicki (2008)

Colloquium Mathematicae

Similarity:

Let k be a field of characteristic zero. We prove that the derivation D = / x + ( y s + p x ) ( / y ) , where s ≥ 2, 0 ≠ p ∈ k, of the polynomial ring k[x,y] is simple.

A note on the kernels of higher derivations

Jiantao Li, Xiankun Du (2013)

Czechoslovak Mathematical Journal

Similarity:

Let k k ' be a field extension. We give relations between the kernels of higher derivations on k [ X ] and k ' [ X ] , where k [ X ] : = k [ x 1 , , x n ] denotes the polynomial ring in n variables over the field k . More precisely, let D = { D n } n = 0 a higher k -derivation on k [ X ] and D ' = { D n ' } n = 0 a higher k ' -derivation on k ' [ X ] such that D m ' ( x i ) = D m ( x i ) for all m 0 and i = 1 , 2 , , n . Then (1) k [ X ] D = k if and only if k ' [ X ] D ' = k ' ; (2) k [ X ] D is a finitely generated k -algebra if and only if k ' [ X ] D ' is a finitely generated k ' -algebra. Furthermore, we also show that the kernel k [ X ] D of a higher derivation D of k [ X ] can be generated...

On ( σ , τ ) -derivations in prime rings

Mohammad Ashraf, Nadeem-ur-Rehman (2002)

Archivum Mathematicum

Similarity:

Let R be a 2-torsion free prime ring and let σ , τ be automorphisms of R . For any x , y R , set [ x , y ] σ , τ = x σ ( y ) - τ ( y ) x . Suppose that d is a ( σ , τ ) -derivation defined on R . In the present paper it is shown that ( i ) if R satisfies [ d ( x ) , x ] σ , τ = 0 , then either d = 0 or R is commutative ( i i ) if I is a nonzero ideal of R such that [ d ( x ) , d ( y ) ] = 0 , for all x , y I , and d commutes with both σ and τ , then either d = 0 or R is commutative. ( i i i ) if I is a nonzero ideal of R such that d ( x y ) = d ( y x ) , for all x , y I , and d commutes with τ , then R is commutative. Finally a related result has been obtain...

A Characterization of One-Element p-Bases of Rings of Constants

Piotr Jędrzejewicz (2011)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let K be a unique factorization domain of characteristic p > 0, and let f ∈ K[x₁,...,xₙ] be a polynomial not lying in K [ x p , . . . , x p ] . We prove that K [ x p , . . . , x p , f ] is the ring of constants of a K-derivation of K[x₁,...,xₙ] if and only if all the partial derivatives of f are relatively prime. The proof is based on a generalization of Freudenburg’s lemma to the case of polynomials over a unique factorization domain of arbitrary characteristic.

Left EM rings

Jongwook Baeck (2024)

Czechoslovak Mathematical Journal

Similarity:

Let R [ x ] be the polynomial ring over a ring R with unity. A polynomial f ( x ) R [ x ] is referred to as a left annihilating content polynomial (left ACP) if there exist an element r R and a polynomial g ( x ) R [ x ] such that f ( x ) = r g ( x ) and g ( x ) is not a right zero-divisor polynomial in R [ x ] . A ring R is referred to as left EM if each polynomial f ( x ) R [ x ] is a left ACP. We observe the structure of left EM rings with various properties, and study the relationships between the one-sided EM condition and other standard ring theoretic conditions....

On skew derivations as homomorphisms or anti-homomorphisms

Mohd Arif Raza, Nadeem ur Rehman, Shuliang Huang (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let R be a prime ring with center Z and I be a nonzero ideal of R . In this manuscript, we investigate the action of skew derivation ( δ , ϕ ) of R which acts as a homomorphism or an anti-homomorphism on I . Moreover, we provide an example for semiprime case.

About G-rings

Najib Mahdou (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper, we are concerned with G-rings. We generalize the Kaplansky’s theorem to rings with zero-divisors. Also, we assert that if R T is a ring extension such that m T R for some regular element m of T , then T is a G-ring if and only if so is R . Also, we examine the transfer of the G-ring property to trivial ring extensions. Finally, we conclude the paper with illustrative examples discussing the utility and limits of our results.