Displaying similar documents to “FKN Theorem on the biased cube”

Coherent ultrafilters and nonhomogeneity

Jan Starý (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We introduce the notion of a coherent P -ultrafilter on a complete ccc Boolean algebra, strengthening the notion of a P -point on ω , and show that these ultrafilters exist generically under 𝔠 = 𝔡 . This improves the known existence result of Ketonen [On the existence of P -points in the Stone-Čech compactification of integers, Fund. Math. 92 (1976), 91–94]. Similarly, the existence theorem of Canjar [On the generic existence of special ultrafilters, Proc. Amer. Math. Soc. 110 (1990), no. 1,...

Linear preserver of n × 1 Ferrers vectors

Leila Fazlpar, Ali Armandnejad (2023)

Czechoslovak Mathematical Journal

Similarity:

Let A = [ a i j ] m × n be an m × n matrix of zeros and ones. The matrix A is said to be a Ferrers matrix if it has decreasing row sums and it is row and column dense with nonzero ( 1 , 1 ) -entry. We characterize all linear maps perserving the set of n × 1 Ferrers vectors over the binary Boolean semiring and over the Boolean ring 2 . Also, we have achieved the number of these linear maps in each case.

Generalised irredundance in graphs: Nordhaus-Gaddum bounds

Ernest J. Cockayne, Stephen Finbow (2004)

Discussiones Mathematicae Graph Theory

Similarity:

For each vertex s of the vertex subset S of a simple graph G, we define Boolean variables p = p(s,S), q = q(s,S) and r = r(s,S) which measure existence of three kinds of S-private neighbours (S-pns) of s. A 3-variable Boolean function f = f(p,q,r) may be considered as a compound existence property of S-pns. The subset S is called an f-set of G if f = 1 for all s ∈ S and the class of f-sets of G is denoted by Ω f ( G ) . Only 64 Boolean functions f can produce different classes Ω f ( G ) , special cases...

The rings which are Boolean

Ivan Chajda, Filip Švrček (2011)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

We study unitary rings of characteristic 2 satisfying identity x p = x for some natural number p. We characterize several infinite families of these rings which are Boolean, i.e., every element is idempotent. For example, it is in the case if p = 2 n - 2 or p = 2 n - 5 or p = 2 n + 1 for a suitable natural number n. Some other (more general) cases are solved for p expressed in the form 2 q + 2 m + 1 or 2 q + 2 m where q is a natural number and m 1 , 2 , . . . , 2 q - 1 .

A tight quantitative version of Arrow’s impossibility theorem

Nathan Keller (2012)

Journal of the European Mathematical Society

Similarity:

The well-known Impossibility Theorem of Arrow asserts that any generalized social welfare function (GSWF) with at least three alternatives, which satisfies Independence of Irrelevant Alternatives (IIA) and Unanimity and is not a dictatorship, is necessarily non-transitive. In 2002, Kalai asked whether one can obtain the following quantitative version of the theorem: For any ϵ > 0 , there exists δ = δ ( ϵ ) such that if a GSWF on three alternatives satisfies the IIA condition and its probability of...

Cardinal sequences of length < ω₂ under GCH

István Juhász, Lajos Soukup, William Weiss (2006)

Fundamenta Mathematicae

Similarity:

Let (α) denote the class of all cardinal sequences of length α associated with compact scattered spaces (or equivalently, superatomic Boolean algebras). Also put λ ( α ) = s ( α ) : s ( 0 ) = λ = m i n [ s ( β ) : β < α ] . We show that f ∈ (α) iff for some natural number n there are infinite cardinals λ i > λ > . . . > λ n - 1 and ordinals α , . . . , α n - 1 such that α = α + + α n - 1 and f = f f . . . f n - 1 where each f i λ i ( α i ) . Under GCH we prove that if α < ω₂ then (i) ω ( α ) = s α ω , ω : s ( 0 ) = ω ; (ii) if λ > cf(λ) = ω, λ ( α ) = s α λ , λ : s ( 0 ) = λ , s - 1 λ i s ω - c l o s e d i n α ; (iii) if cf(λ) = ω₁, λ ( α ) = s α λ , λ : s ( 0 ) = λ , s - 1 λ i s ω - c l o s e d a n d s u c c e s s o r - c l o s e d i n α ; (iv) if cf(λ) > ω₁, λ ( α ) = α λ . This yields a complete characterization of the classes (α) for all...

Counterexamples to Hedetniemi's conjecture and infinite Boolean lattices

Claude Tardif (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove that for any c 5 , there exists an infinite family ( G n ) n of graphs such that χ ( G n ) > c for all n and χ ( G m × G n ) c for all m n . These counterexamples to Hedetniemi’s conjecture show that the Boolean lattice of exponential graphs with K c as a base is infinite for c 5 .

A note on average behaviour of the Fourier coefficients of j th symmetric power L -function over certain sparse sequence of positive integers

Youjun Wang (2024)

Czechoslovak Mathematical Journal

Similarity:

Let j 2 be a given integer. Let H k * be the set of all normalized primitive holomorphic cusp forms of even integral weight k 2 for the full modulo group SL ( 2 , ) . For f H k * , denote by λ sym j f ( n ) the n th normalized Fourier coefficient of j th symmetric power L -function ( L ( s , sym j f ) ) attached to f . We are interested in the average behaviour of the sum n = a 1 2 + a 2 2 + a 3 2 + a 4 2 + a 5 2 + a 6 2 x ( a 1 , a 2 , a 3 , a 4 , a 5 , a 6 ) 6 λ sym j f 2 ( n ) , where x is sufficiently large, which improves the recent work of A. Sharma and A. Sankaranarayanan (2023).

Possible isolation number of a matrix over nonnegative integers

LeRoy B. Beasley, Young Bae Jun, Seok-Zun Song (2018)

Czechoslovak Mathematical Journal

Similarity:

Let + be the semiring of all nonnegative integers and A an m × n matrix over + . The rank of A is the smallest k such that A can be factored as an m × k matrix times a k × n matrix. The isolation number of A is the maximum number of nonzero entries in A such that no two are in any row or any column, and no two are in a 2 × 2 submatrix of all nonzero entries. We have that the isolation number of A is a lower bound of the rank of A . For A with isolation number k , we investigate the possible values of the...

On preimages of ultrafilters in ZF

Horst Herrlich, Paul Howard, Kyriakos Keremedis (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We show that given infinite sets X , Y and a function f : X Y which is onto and n -to-one for some n , the preimage of any ultrafilter of Y under f extends to an ultrafilter. We prove that the latter result is, in some sense, the best possible by constructing a permutation model with a set of atoms A and a finite-to-one onto function f : A ω such that for each free ultrafilter of ω its preimage under f does not extend to an ultrafilter. In addition, we show that in there exists an ultrafilter compact...

Combinatorics of dense subsets of the rationals

B. Balcar, F. Hernández-Hernández, M. Hrušák (2004)

Fundamenta Mathematicae

Similarity:

We study combinatorial properties of the partial order (Dense(ℚ),⊆). To do that we introduce cardinal invariants , , , , , describing properties of Dense(ℚ). These invariants satisfy ≤ ℚ ≤ ℚ ≤ ℚ ≤ ℚ ≤ ℚ . W e c o m p a r e t h e m w i t h t h e i r a n a l o g u e s i n t h e w e l l s t u d i e d B o o l e a n a l g e b r a ( ω ) / f i n . W e s h o w t h a t ℚ = p , ℚ = t a n d ℚ = i , w h e r e a s ℚ > h a n d ℚ > r a r e b o t h s h o w n t o b e r e l a t i v e l y c o n s i s t e n t w i t h Z F C . W e a l s o i n v e s t i g a t e c o m b i n a t o r i c s o f t h e i d e a l n w d o f n o w h e r e d e n s e s u b s e t s o f , . I n p a r t i c u l a r , w e s h o w t h a t non(M)=min||: ⊆ Dense(R) ∧ (∀I ∈ nwd(R))(∃D ∈ )(I ∩ D = ∅) and cof(M) = min||: ⊆ Dense(ℚ) ∧ (∀I ∈ nwd)(∃D ∈ )(I ∩ = ∅). We use these facts to show that cof(M) ≤ i, which improves a result of S. Shelah.

Balcar's theorem on supports

Lev Bukovský (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In A theorem on supports in the theory of semisets [Comment. Math. Univ. Carolinae 14 (1973), no. 1, 1–6] B. Balcar showed that if σ D M is a support, M being an inner model of ZFC, and 𝒫 ( D σ ) M = r ` ` σ with r M , then r determines a preorder " " of D such that σ becomes a filter on ( D , ) generic over M . We show that if the relation r is replaced by a function 𝒫 ( D σ ) M = f - 1 ( σ ) , then there exists an equivalence relation " " on D and a partial order on D / such that D / is a complete Boolean algebra, σ / is a generic filter and [ f ( u ) ] = - ( u / ) for...

( 0 , 1 ) -matrices, discrepancy and preservers

LeRoy B. Beasley (2019)

Czechoslovak Mathematical Journal

Similarity:

Let m and n be positive integers, and let R = ( r 1 , ... , r m ) and S = ( s 1 , ... , s n ) be nonnegative integral vectors. Let A ( R , S ) be the set of all m × n ( 0 , 1 ) -matrices with row sum vector R and column vector S . Let R and S be nonincreasing, and let F ( R ) be the m × n ( 0 , 1 ) -matrix, where for each i , the i th row of F ( R , S ) consists of r i 1’s followed by ( n - r i ) 0’s. Let A A ( R , S ) . The discrepancy of A, disc ( A ) , is the number of positions in which F ( R ) has a 1 and A has a 0. In this paper we investigate linear operators mapping m × n matrices over...

Purity of level m stratifications

Marc-Hubert Nicole, Adrian Vasiu, Torsten Wedhorn (2010)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Let k be a field of characteristic p &gt; 0 . Let D m be a BT m over k (i.e., an m -truncated Barsotti–Tate group over k ). Let S be a k -scheme and let X be a BT m over S . Let S D m ( X ) be the subscheme of S which describes the locus where X is locally for the fppf topology isomorphic to D m . If p 5 , we show that S D m ( X ) is pure in S , i.e. the immersion S D m ( X ) S is affine. For p { 2 , 3 } , we prove purity if D m satisfies a certain technical property depending only on its p -torsion D m [ p ] . For p 5 , we apply the developed techniques to show that...

On biorthogonal systems whose functionals are finitely supported

Christina Brech, Piotr Koszmider (2011)

Fundamenta Mathematicae

Similarity:

We show that for each natural number n > 1, it is consistent that there is a compact Hausdorff totally disconnected space K 2 n such that C ( K 2 n ) has no uncountable (semi)biorthogonal sequence ( f ξ , μ ξ ) ξ ω where μ ξ ’s are atomic measures with supports consisting of at most 2n-1 points of K 2 n , but has biorthogonal systems ( f ξ , μ ξ ) ξ ω where μ ξ ’s are atomic measures with supports consisting of 2n points. This complements a result of Todorcevic which implies that it is consistent that such spaces do not exist: he proves...