Absolute colimits in enriched categories
Ross Street (1983)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Ross Street (1983)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Soud Khalifa Mohamed (2009)
Colloquium Mathematicae
Similarity:
We generalize the relative (co)tilting theory of Auslander-Solberg in the category mod Λ of finitely generated left modules over an artin algebra Λ to certain subcategories of mod Λ. We then use the theory (relative (co)tilting theory in subcategories) to generalize one of the main result of Marcos et al. [Comm. Algebra 33 (2005)].
Alberto Facchini (1985)
Acta Universitatis Carolinae. Mathematica et Physica
Similarity:
K. Erdmann, D. Madsen, V. Miemietz (2010)
Colloquium Mathematicae
Similarity:
We consider functorially finite subcategories in module categories over Artin algebras. One main result provides a method, in the setup of bounded derived categories, to compute approximations and the end terms of relative Auslander-Reiten sequences. We also prove an Auslander-Reiten formula for the setting of functorially finite subcategories. Furthermore, we study the category of modules filtered by standard modules for certain quasi-hereditary algebras and we classify precisely when...
Manabu Harada (1972)
Publications du Département de mathématiques (Lyon)
Similarity:
Guillaume Tomasini (2013)
Annales de l’institut Fourier
Similarity:
The category of all modules over a reductive complex Lie algebra is wild, and therefore it is useful to study full subcategories. For instance, Bernstein, Gelfand and Gelfand introduced a category of modules which provides a natural setting for highest weight modules. In this paper, we define a family of categories which generalizes the BGG category, and we classify the simple modules for a subfamily. As a consequence, we show that some of the obtained categories are semisimple. ...
M. Barot, O. Mendoza (2006)
Colloquium Mathematicae
Similarity:
An easy explicit construction is given for a full and faithful functor from the bounded derived category of modules over an associative algebra A to the stable category of the repetitive algebra of A. This construction simplifies the one given by Happel.
Manabu Harada (1974)
Publications du Département de mathématiques (Lyon)
Similarity:
William Crawley-Boevey, Otto Kerner (1994)
Mathematische Annalen
Similarity:
Stovicek, Jan (2010)
Documenta Mathematica
Similarity:
Karin Erdmann, José Antonio de la Peña, Corina Sáenz (2002)
Colloquium Mathematicae
Similarity:
Let A be a finite-dimensional algebra which is quasi-hereditary with respect to the poset (Λ, ≤), with standard modules Δ(λ) for λ ∈ Λ. Let ℱ(Δ) be the category of A-modules which have filtrations where the quotients are standard modules. We determine some inductive results on the relative Auslander-Reiten quiver of ℱ(Δ).
Daniel Simson (1982)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Gena Puninski (2012)
Colloquium Mathematicae
Similarity:
We prove that the Krull-Gabriel dimension of the category of modules over any 1-domestic non-degenerate string algebra is 3.
Timothy Porter (1985)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Shuangjian Guo, Xiaohui Zhang, Shengxiang Wang (2016)
Colloquium Mathematicae
Similarity:
We continue our study of the category of Doi Hom-Hopf modules introduced in [Colloq. Math., to appear]. We find a sufficient condition for the category of Doi Hom-Hopf modules to be monoidal. We also obtain a condition for a monoidal Hom-algebra and monoidal Hom-coalgebra to be monoidal Hom-bialgebras. Moreover, we introduce morphisms between the underlying monoidal Hom-Hopf algebras, Hom-comodule algebras and Hom-module coalgebras, which give rise to functors between the category of...