Displaying similar documents to “Subcategories of the derived category and cotilting complexes”

Relative theory in subcategories

Soud Khalifa Mohamed (2009)

Colloquium Mathematicae

Similarity:

We generalize the relative (co)tilting theory of Auslander-Solberg in the category mod Λ of finitely generated left modules over an artin algebra Λ to certain subcategories of mod Λ. We then use the theory (relative (co)tilting theory in subcategories) to generalize one of the main result of Marcos et al. [Comm. Algebra 33 (2005)].

On Auslander-Reiten translates in functorially finite subcategories and applications

K. Erdmann, D. Madsen, V. Miemietz (2010)

Colloquium Mathematicae

Similarity:

We consider functorially finite subcategories in module categories over Artin algebras. One main result provides a method, in the setup of bounded derived categories, to compute approximations and the end terms of relative Auslander-Reiten sequences. We also prove an Auslander-Reiten formula for the setting of functorially finite subcategories. Furthermore, we study the category of modules filtered by standard modules for certain quasi-hereditary algebras and we classify precisely when...

Restriction to Levi subalgebras and generalization of the category 𝒪

Guillaume Tomasini (2013)

Annales de l’institut Fourier

Similarity:

The category of all modules over a reductive complex Lie algebra is wild, and therefore it is useful to study full subcategories. For instance, Bernstein, Gelfand and Gelfand introduced a category of modules which provides a natural setting for highest weight modules. In this paper, we define a family of categories which generalizes the BGG category, and we classify the simple modules for a subfamily. As a consequence, we show that some of the obtained categories are semisimple. ...

An explicit construction for the Happel functor

M. Barot, O. Mendoza (2006)

Colloquium Mathematicae

Similarity:

An easy explicit construction is given for a full and faithful functor from the bounded derived category of modules over an associative algebra A to the stable category of the repetitive algebra of A. This construction simplifies the one given by Happel.

Relative Auslander-Reiten sequences for quasi-hereditary algebras

Karin Erdmann, José Antonio de la Peña, Corina Sáenz (2002)

Colloquium Mathematicae

Similarity:

Let A be a finite-dimensional algebra which is quasi-hereditary with respect to the poset (Λ, ≤), with standard modules Δ(λ) for λ ∈ Λ. Let ℱ(Δ) be the category of A-modules which have filtrations where the quotients are standard modules. We determine some inductive results on the relative Auslander-Reiten quiver of ℱ(Δ).

Braided monoidal categories and Doi-Hopf modules for monoidal Hom-Hopf algebras

Shuangjian Guo, Xiaohui Zhang, Shengxiang Wang (2016)

Colloquium Mathematicae

Similarity:

We continue our study of the category of Doi Hom-Hopf modules introduced in [Colloq. Math., to appear]. We find a sufficient condition for the category of Doi Hom-Hopf modules to be monoidal. We also obtain a condition for a monoidal Hom-algebra and monoidal Hom-coalgebra to be monoidal Hom-bialgebras. Moreover, we introduce morphisms between the underlying monoidal Hom-Hopf algebras, Hom-comodule algebras and Hom-module coalgebras, which give rise to functors between the category of...