Displaying similar documents to “Necessary and sufficient conditions for boundedness of the maximal operator in local Morrey-type spaces”

A rigidity phenomenon for the Hardy-Littlewood maximal function

Stefan Steinerberger (2015)

Studia Mathematica

Similarity:

The Hardy-Littlewood maximal function ℳ and the trigonometric function sin x are two central objects in harmonic analysis. We prove that ℳ characterizes sin x in the following way: Let f C α ( , ) be a periodic function and α > 1/2. If there exists a real number 0 < γ < ∞ such that the averaging operator ( A x f ) ( r ) = 1 / 2 r x - r x + r f ( z ) d z has a critical point at r = γ for every x ∈ ℝ, then f(x) = a + bsin(cx+d) for some a,b,c,d ∈ ℝ. This statement can be used to derive a characterization of trigonometric functions as...

Weighted multi-parameter mixed Hardy spaces and their applications

Wei Ding, Yun Xu, Yueping Zhu (2022)

Czechoslovak Mathematical Journal

Similarity:

Applying discrete Calderón’s identity, we study weighted multi-parameter mixed Hardy space H mix p ( ω , n 1 × n 2 ) . Different from classical multi-parameter Hardy space, this space has characteristics of local Hardy space and Hardy space in different directions, respectively. As applications, we discuss the boundedness on H mix p ( ω , n 1 × n 2 ) of operators in mixed Journé’s class.

Regularity of the Hardy-Littlewood maximal operator on block decreasing functions

J. M. Aldaz, F. J. Pérez Lázaro (2009)

Studia Mathematica

Similarity:

We study the Hardy-Littlewood maximal operator defined via an unconditional norm, acting on block decreasing functions. We show that the uncentered maximal operator maps block decreasing functions of special bounded variation to functions with integrable distributional derivatives, thus improving their regularity. In the special case of the maximal operator defined by the -norm, that is, by averaging over cubes, the result extends to block decreasing functions of bounded variation,...

The John-Nirenberg inequality for functions of bounded mean oscillation with bounded negative part

Min Hu, Dinghuai Wang (2022)

Czechoslovak Mathematical Journal

Similarity:

A version of the John-Nirenberg inequality suitable for the functions b BMO with b - L is established. Then, equivalent definitions of this space via the norm of weighted Lebesgue space are given. As an application, some characterizations of this function space are given by the weighted boundedness of the commutator with the Hardy-Littlewood maximal operator.

The maximal theorem for weighted grand Lebesgue spaces

Alberto Fiorenza, Babita Gupta, Pankaj Jain (2008)

Studia Mathematica

Similarity:

We study the Hardy inequality and derive the maximal theorem of Hardy and Littlewood in the context of grand Lebesgue spaces, considered when the underlying measure space is the interval (0,1) ⊂ ℝ, and the maximal function is localized in (0,1). Moreover, we prove that the inequality | | M f | | p ) , w c | | f | | p ) , w holds with some c independent of f iff w belongs to the well known Muckenhoupt class A p , and therefore iff | | M f | | p , w c | | f | | p , w for some c independent of f. Some results of similar type are discussed for the case of small...

Extending Hardy fields by non- -germs

Krzysztof Grelowski (2008)

Annales Polonici Mathematici

Similarity:

For a large class of Hardy fields their extensions containing non- -germs are constructed. Hardy fields composed of only non- -germs, apart from constants, are also considered.

Factorization of sequences in discrete Hardy spaces

Santiago Boza (2012)

Studia Mathematica

Similarity:

The purpose of this paper is to obtain a discrete version for the Hardy spaces H p ( ) of the weak factorization results obtained for the real Hardy spaces H p ( ) by Coifman, Rochberg and Weiss for p > n/(n+1), and by Miyachi for p ≤ n/(n+1). It represents an extension, in the one-dimensional case, of the corresponding result by A. Uchiyama who obtained a factorization theorem in the general context of spaces X of homogeneous type, but with some restrictions on the measure that exclude the case...

Fejér means of two-dimensional Fourier transforms on H p ( × )

Ferenc Weisz (1999)

Colloquium Mathematicae

Similarity:

The two-dimensional classical Hardy spaces H p ( × ) are introduced and it is shown that the maximal operator of the Fejér means of a tempered distribution is bounded from H p ( × ) to L p ( 2 ) (1/2 < p ≤ ∞) and is of weak type ( H 1 ( × ) , L 1 ( 2 ) ) where the Hardy space H 1 ( × ) is defined by the hybrid maximal function. As a consequence we deduce that the Fejér means of a function f ∈ H 1 ( × ) L l o g L ( 2 ) converge to f a.e. Moreover, we prove that the Fejér means are uniformly bounded on H p ( × ) whenever 1/2 < p < ∞. Thus, in case f ∈ H p ( × ) , the...

Weighted Hardy inequalities and Hardy transforms of weights

Joan Cerdà, Joaquim Martín (2000)

Studia Mathematica

Similarity:

Many problems in analysis are described as weighted norm inequalities that have given rise to different classes of weights, such as A p -weights of Muckenhoupt and B p -weights of Ariño and Muckenhoupt. Our purpose is to show that different classes of weights are related by means of composition with classical transforms. A typical example is the family M p of weights w for which the Hardy transform is L p ( w ) -bounded. A B p -weight is precisely one for which its Hardy transform is in M p , and also a weight...

Monge-Ampère measures and Poletsky-Stessin Hardy spaces on bounded hyperconvex domains

Sibel Şahin (2015)

Banach Center Publications

Similarity:

Poletsky-Stessin Hardy (PS-Hardy) spaces are the natural generalizations of classical Hardy spaces of the unit disc to general bounded, hyperconvex domains. On a bounded hyperconvex domain Ω, the PS-Hardy space H u p ( Ω ) is generated by a continuous, negative, plurisubharmonic exhaustion function u of the domain. Poletsky and Stessin considered the general properties of these spaces and mainly concentrated on the spaces H u p ( Ω ) where the Monge-Ampère measure ( d d c u ) has compact support for the associated...

On a variant of the Hardy inequality between weighted Orlicz spaces

Agnieszka Kałamajska, Katarzyna Pietruska-Pałuba (2009)

Studia Mathematica

Similarity:

Let M be an N-function satisfying the Δ₂-condition, and let ω, φ be two other functions, with ω ≥ 0. We study Hardy-type inequalities M ( ω ( x ) | u ( x ) | ) e x p ( - φ ( x ) ) d x C M ( | u ' ( x ) | ) e x p ( - φ ( x ) ) d x , where u belongs to some set of locally absolutely continuous functions containing C ( ) . We give sufficient conditions on the triple (ω,φ,M) for such inequalities to be valid for all u from a given set . The set may be smaller than the set of Hardy transforms. Bounds for constants are also given, yielding classical Hardy inequalities with best constants. ...

Growth estimates for generalized factors of H p spaces

Joseph A. Cima, Angeliki Kazas, Michael I. Stessin (2003)

Studia Mathematica

Similarity:

With φ an inner function and M φ the multiplication operator on a given Hardy space it is known that for any given function f in the Hardy space we may use the Wold decomposition to obtain a factorization of the given f (not the Riesz factorization). This new factorization has been shown to be useful in the study of commutants of Toeplitz operators. We study the smoothness of each factor of this factorization. We show in some cases that the factors lie in the same Hardy space (or smoothness...

ω-Calderón-Zygmund operators

Sijue Wu (1995)

Studia Mathematica

Similarity:

We prove a T1 theorem and develop a version of Calderón-Zygmund theory for ω-CZO when ω A .

A sharp estimate for the Hardy-Littlewood maximal function

Loukas Grafakos, Stephen Montgomery-Smith, Olexei Motrunich (1999)

Studia Mathematica

Similarity:

The best constant in the usual L p norm inequality for the centered Hardy-Littlewood maximal function on 1 is obtained for the class of all “peak-shaped” functions. A function on the line is called peak-shaped if it is positive and convex except at one point. The techniques we use include variational methods.

On the spectrum of the p-biharmonic operator involving p-Hardy's inequality

Abdelouahed El Khalil, My Driss Morchid Alaoui, Abdelfattah Touzani (2014)

Applicationes Mathematicae

Similarity:

In this paper, we study the spectrum for the following eigenvalue problem with the p-biharmonic operator involving the Hardy term: Δ ( | Δ u | p - 2 Δ u ) = λ ( | u | p - 2 u ) / ( δ ( x ) 2 p ) in Ω, u W 2 , p ( Ω ) . By using the variational technique and the Hardy-Rellich inequality, we prove that the above problem has at least one increasing sequence of positive eigenvalues.

Transference and restriction of maximal multiplier operators on Hardy spaces

Zhixin Liu, Shanzhen Lu (1993)

Studia Mathematica

Similarity:

The aim of this paper is to establish transference and restriction theorems for maximal operators defined by multipliers on the Hardy spaces H p ( n ) and H p ( n ) , 0 < p ≤ 1, which generalize the results of Kenig-Tomas for the case p > 1. We prove that under a mild regulation condition, an L ( n ) function m is a maximal multiplier on H p ( n ) if and only if it is a maximal multiplier on H p ( n ) . As an application, the restriction of maximal multipliers to lower dimensional Hardy spaces is considered. ...

A note on rare maximal functions

Paul Alton Hagelstein (2003)

Colloquium Mathematicae

Similarity:

A necessary and sufficient condition is given on the basis of a rare maximal function M l such that M l f L ¹ ( [ 0 , 1 ] ) implies f ∈ L log L([0,1]).