Displaying similar documents to “Littlewood-Paley-Stein functions on complete Riemannian manifolds for 1 ≤ p ≤ 2”

Weighted norm estimates for the maximal operator of the Laguerre functions heat diffusion semigroup

R. Macías, C. Segovia, J. L. Torrea (2006)

Studia Mathematica

Similarity:

We obtain weighted L p boundedness, with weights of the type y δ , δ > -1, for the maximal operator of the heat semigroup associated to the Laguerre functions, k α k , when the parameter α is greater than -1. It is proved that when -1 < α < 0, the maximal operator is of strong type (p,p) if p > 1 and 2(1+δ)/(2+α) < p < 2(1+δ)/(-α), and if α ≥ 0 it is of strong type for 1 < p ≤ ∞ and 2(1+δ)/(2+α) < p. The behavior at the end points of the intervals where there is strong...

Gradient estimates of Li Yau type for a general heat equation on Riemannian manifolds

Nguyen Ngoc Khanh (2016)

Archivum Mathematicum

Similarity:

In this paper, we consider gradient estimates on complete noncompact Riemannian manifolds ( M , g ) for the following general heat equation u t = Δ V u + a u log u + b u where a is a constant and b is a differentiable function defined on M × [ 0 , ) . We suppose that the Bakry-Émery curvature and the N -dimensional Bakry-Émery curvature are bounded from below, respectively. Then we obtain the gradient estimate of Li-Yau type for the above general heat equation. Our results generalize the work of Huang-Ma ([4]) and Y. Li ([6]), recently. ...

Heat kernel estimates for the Dirichlet fractional Laplacian

Zhen-Qing Chen, Panki Kim, Renming Song (2010)

Journal of the European Mathematical Society

Similarity:

We consider the fractional Laplacian - ( - Δ ) α / 2 on an open subset in d with zero exterior condition. We establish sharp two-sided estimates for the heat kernel of such a Dirichlet fractional Laplacian in C 1 , 1 open sets. This heat kernel is also the transition density of a rotationally symmetric α -stable process killed upon leaving a C 1 , 1 open set. Our results are the first sharp twosided estimates for the Dirichlet heat kernel of a non-local operator on open sets.

Boundedness of Littlewood-Paley operators relative to non-isotropic dilations

Shuichi Sato (2019)

Czechoslovak Mathematical Journal

Similarity:

We consider Littlewood-Paley functions associated with a non-isotropic dilation group on n . We prove that certain Littlewood-Paley functions defined by kernels with no regularity concerning smoothness are bounded on weighted L p spaces, 1 < p < , with weights of the Muckenhoupt class. This, in particular, generalizes a result of N. Rivière (1971).

Hardy's theorem for the helgason Fourier transform on noncompact rank one symmetric spaces

S. Thangavelu (2002)

Colloquium Mathematicae

Similarity:

Let G be a semisimple Lie group with Iwasawa decomposition G = KAN. Let X = G/K be the associated symmetric space and assume that X is of rank one. Let M be the centraliser of A in K and consider an orthonormal basis Y δ , j : δ K ̂ , 1 j d δ of L²(K/M) consisting of K-finite functions of type δ on K/M. For a function f on X let f̃(λ,b), λ ∈ ℂ, be the Helgason Fourier transform. Let h t be the heat kernel associated to the Laplace-Beltrami operator and let Q δ ( i λ + ϱ ) be the Kostant polynomials. We establish the following...

Second order elliptic operators with complex bounded measurable coefficients in  L p , Sobolev and Hardy spaces

Steve Hofmann, Svitlana Mayboroda, Alan McIntosh (2011)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Let  L be a second order divergence form elliptic operator with complex bounded measurable coefficients. The operators arising in connection with L , such as the heat semigroup and Riesz transform, are not, in general, of Calderón-Zygmund type and exhibit behavior different from their counterparts built upon the Laplacian. The current paper aims at a thorough description of the properties of such operators in  L p , Sobolev, and some new Hardy spaces naturally associated to  L . First, we show...

Inequalities involving heat potentials and Green functions

Neil A. Watson (2015)

Mathematica Bohemica

Similarity:

We take some well-known inequalities for Green functions relative to Laplace’s equation, and prove not only analogues of them relative to the heat equation, but generalizations of those analogues to the heat potentials of nonnegative measures on an arbitrary open set E whose supports are compact polar subsets of E . We then use the special case where the measure associated to the potential has point support, in the following situation. Given a nonnegative supertemperature on an open set...

Commutators of Littlewood-Paley [...] g κ ∗ g κ * -functions on non-homogeneous metric measure spaces

Guanghui Lu, Shuangping Tao (2017)

Open Mathematics

Similarity:

The main purpose of this paper is to prove that the boundedness of the commutator [...] Mκ,b∗ κ , b * generated by the Littlewood-Paley operator [...] Mκ∗ κ * and RBMO (μ) function on non-homogeneous metric measure spaces satisfying the upper doubling and the geometrically doubling conditions. Under the assumption that the kernel of [...] Mκ∗ κ * satisfies a certain Hörmander-type condition, the authors prove that [...] Mκ,b∗ κ , b * is bounded on Lebesgue spaces Lp(μ) for 1 < p < ∞, bounded from...

Maximal operators of Fejér means of double Vilenkin-Fourier series

István Blahota, György Gát, Ushangi Goginava (2007)

Colloquium Mathematicae

Similarity:

The main aim of this paper is to prove that the maximal operator σ * : = s u p | σ n , n | of the Fejér means of the double Vilenkin-Fourier series is not bounded from the Hardy space H 1 / 2 to the space weak- L 1 / 2 .

A Hörmander-type spectral multiplier theorem for operators without heat kernel

Sönke Blunck (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

Hörmander’s famous Fourier multiplier theorem ensures the L p -boundedness of F ( - Δ D ) whenever F ( s ) for some s &gt; D 2 , where we denote by ( s ) the set of functions satisfying the Hörmander condition for s derivatives. Spectral multiplier theorems are extensions of this result to more general operators A 0 and yield the L p -boundedness of F ( A ) provided F ( s ) for some s sufficiently large. The harmonic oscillator A = - Δ + x 2 shows that in general s &gt; D 2 is not sufficient even if A has a heat kernel satisfying gaussian estimates. In...

A Hardy space related to the square root of the Poisson kernel

Jonatan Vasilis (2010)

Studia Mathematica

Similarity:

A real-valued Hardy space H ¹ ( ) L ¹ ( ) related to the square root of the Poisson kernel in the unit disc is defined. The space is shown to be strictly larger than its classical counterpart H¹(). A decreasing function is in H ¹ ( ) if and only if the function is in the Orlicz space LloglogL(). In contrast to the case of H¹(), there is no such characterization for general positive functions: every Orlicz space strictly larger than L log L() contains positive functions which do not belong to H ¹ ( ) , and no Orlicz...

Generators of Brownian motions on abstract Wiener spaces

Kei Harada (2010)

Banach Center Publications

Similarity:

We prove that Brownian motion on an abstract Wiener space B generates a locally equicontinuous semigroup on C b ( B ) equipped with the T t -topology introduced by L. Le Cam. Hence we obtain a “Laplace operator” as its infinitesimal generator. Using this Laplacian, we discuss Poisson’s equation and heat equation, and study its properties, especially the difference from the Gross Laplacian.

Tykhonov well-posedness of a heat transfer problem with unilateral constraints

Mircea Sofonea, Domingo A. Tarzia (2022)

Applications of Mathematics

Similarity:

We consider an elliptic boundary value problem with unilateral constraints and subdifferential boundary conditions. The problem describes the heat transfer in a domain D d and its weak formulation is in the form of a hemivariational inequality for the temperature field, denoted by 𝒫 . We associate to Problem 𝒫 an optimal control problem, denoted by 𝒬 . Then, using appropriate Tykhonov triples, governed by a nonlinear operator G and a convex K ˜ , we provide results concerning the well-posedness...

Transference and restriction of maximal multiplier operators on Hardy spaces

Zhixin Liu, Shanzhen Lu (1993)

Studia Mathematica

Similarity:

The aim of this paper is to establish transference and restriction theorems for maximal operators defined by multipliers on the Hardy spaces H p ( n ) and H p ( n ) , 0 < p ≤ 1, which generalize the results of Kenig-Tomas for the case p > 1. We prove that under a mild regulation condition, an L ( n ) function m is a maximal multiplier on H p ( n ) if and only if it is a maximal multiplier on H p ( n ) . As an application, the restriction of maximal multipliers to lower dimensional Hardy spaces is considered. ...

Involutivity of truncated microsupports

Masaki Kashiwara, Térésa Monteiro Fernandes, Pierre Schapira (2003)

Bulletin de la Société Mathématique de France

Similarity:

Using a result of J.-M. Bony, we prove the weak involutivity of truncated microsupports. More precisely, given a sheaf F on a real manifold and k , if two functions vanish on SS k ( F ) , then so does their Poisson bracket.

Radial Heat Diffusion from the Root of a Homogeneous Tree and the Combinatorics of Paths

Joel M. Cohen, Mauro Pagliacci, Massimo A. Picardello (2008)

Bollettino dell'Unione Matematica Italiana

Similarity:

We compute recursively the heat semigroup in a rooted homogeneous tree for the diffusion with radial (with respect to the root) but non-isotropic transition probabilities. This is the discrete analogue of the heat operator on the disc given by Δ + c r for some constant c that represents a drift towards (or away from) the origin.

The weak type inequality for the Walsh system

Ushangi Goginava (2008)

Studia Mathematica

Similarity:

The main aim of this paper is to prove that the maximal operator σ is bounded from the Hardy space H 1 / 2 to weak- L 1 / 2 and is not bounded from H 1 / 2 to L 1 / 2 .

The method of rotation and Marcinkiewicz integrals on product domains

Jiecheng Chen, Dashan Fan, Yiming Ying (2002)

Studia Mathematica

Similarity:

We give some rather weak sufficient condition for L p boundedness of the Marcinkiewicz integral operator μ Ω on the product spaces × m (1 < p < ∞), which improves and extends some known results.