Bounded operators on weighted spaces of holomorphic functions on the upper half-plane
Mohammad Ali Ardalani, Wolfgang Lusky (2012)
Studia Mathematica
Similarity:
Let v be a standard weight on the upper half-plane , i.e. v: → ]0,∞[ is continuous and satisfies v(w) = v(i Im w), w ∈ , v(it) ≥ v(is) if t ≥ s > 0 and . Put v₁(w) = Im wv(w), w ∈ . We characterize boundedness and surjectivity of the differentiation operator D: Hv() → Hv₁(). For example we show that D is bounded if and only if v is at most of moderate growth. We also study composition operators on Hv().