Displaying similar documents to “Weighted Fréchet spaces of holomorphic functions”

Bounded operators on weighted spaces of holomorphic functions on the upper half-plane

Mohammad Ali Ardalani, Wolfgang Lusky (2012)

Studia Mathematica

Similarity:

Let v be a standard weight on the upper half-plane , i.e. v: → ]0,∞[ is continuous and satisfies v(w) = v(i Im w), w ∈ , v(it) ≥ v(is) if t ≥ s > 0 and l i m t 0 v ( i t ) = 0 . Put v₁(w) = Im wv(w), w ∈ . We characterize boundedness and surjectivity of the differentiation operator D: Hv() → Hv₁(). For example we show that D is bounded if and only if v is at most of moderate growth. We also study composition operators on Hv().

Weighted composition operators between weighted Banach spaces of holomorphic functions and weighted Bloch type space

Elke Wolf (2009)

Annales Polonici Mathematici

Similarity:

Let ϕ: → and ψ: → ℂ be analytic maps. They induce a weighted composition operator ψ C ϕ acting between weighted Banach spaces of holomorphic functions and weighted Bloch type spaces. Under some assumptions on the weights we give a necessary as well as a sufficient condition for such an operator to be bounded resp. compact.

Weighted L -estimates for Bergman projections

José Bonet, Miroslav Engliš, Jari Taskinen (2005)

Studia Mathematica

Similarity:

We consider Bergman projections and some new generalizations of them on weighted L ( ) -spaces. A new reproducing formula is obtained. We show the boundedness of these projections for a large family of weights v which tend to 0 at the boundary with a polynomial speed. These weights may even be nonradial. For logarithmically decreasing weights bounded projections do not exist. In this case we instead consider the projective description problem for holomorphic inductive limits.

Weighted composition operators from Zygmund spaces to Bloch spaces on the unit ball

Yu-Xia Liang, Chang-Jin Wang, Ze-Hua Zhou (2015)

Annales Polonici Mathematici

Similarity:

Let H() denote the space of all holomorphic functions on the unit ball ⊂ ℂⁿ. Let φ be a holomorphic self-map of and u∈ H(). The weighted composition operator u C φ on H() is defined by u C φ f ( z ) = u ( z ) f ( φ ( z ) ) . We investigate the boundedness and compactness of u C φ induced by u and φ acting from Zygmund spaces to Bloch (or little Bloch) spaces in the unit ball.

Holomorphic series expansion of functions of Carleman type

Taib Belghiti (2004)

Annales Polonici Mathematici

Similarity:

Let f be a holomorphic function of Carleman type in a bounded convex domain D of the plane. We show that f can be expanded in a series f = ∑ₙfₙ, where fₙ is a holomorphic function in Dₙ satisfying s u p z D | f ( z ) | C ϱ for some constants C > 0 and 0 < ϱ < 1, and where (Dₙ)ₙ is a suitably chosen sequence of decreasing neighborhoods of the closure of D. Conversely, if f admits such an expansion then f is of Carleman type. The decrease of the sequence Dₙ characterizes the smoothness of f. ...

Disjoint hypercyclic powers of weighted translations on groups

Liang Zhang, Hui-Qiang Lu, Xiao-Mei Fu, Ze-Hua Zhou (2017)

Czechoslovak Mathematical Journal

Similarity:

Let G be a locally compact group and let 1 p < . Recently, Chen et al. characterized hypercyclic, supercyclic and chaotic weighted translations on locally compact groups and their homogeneous spaces. There has been an increasing interest in studying the disjoint hypercyclicity acting on various spaces of holomorphic functions. In this note, we will study disjoint hypercyclic and disjoint supercyclic powers of weighted translation operators on the Lebesgue space L p ( G ) in terms of the weights. Sufficient...

On the boundedness of the differentiation operator between weighted spaces of holomorphic functions

Anahit Harutyunyan, Wolfgang Lusky (2008)

Studia Mathematica

Similarity:

We give necessary and sufficient conditions on the weights v and w such that the differentiation operator D: Hv(Ω) → Hw(Ω) between two weighted spaces of holomorphic functions is bounded and onto. Here Ω = ℂ or Ω = 𝔻. In particular we characterize all weights v such that D: Hv(Ω) → Hw(Ω) is bounded and onto where w(r) = v(r)(1-r) if Ω = 𝔻 and w = v if Ω = ℂ. This leads to a new description of normal weights.

On the diametral dimension of weighted spaces of analytic germs

Michael Langenbruch (2016)

Studia Mathematica

Similarity:

We prove precise estimates for the diametral dimension of certain weighted spaces of germs of holomorphic functions defined on strips near ℝ. This implies a full isomorphic classification for these spaces including the Gelfand-Shilov spaces S ¹ α and S α for α > 0. Moreover we show that the classical spaces of Fourier hyperfunctions and of modified Fourier hyperfunctions are not isomorphic.

On the Rogosinski radius for holomorphic mappings and some of its applications

Lev Aizenberg, Mark Elin, David Shoikhet (2005)

Studia Mathematica

Similarity:

The well known theorem of Rogosinski asserts that if the modulus of the sum of a power series is less than 1 in the open unit disk: | n = 0 a z | < 1 , |z| < 1, then all its partial sums are less than 1 in the disk of radius 1/2: | n = 0 k a z | < 1 , |z| < 1/2, and this radius is sharp. We present a generalization of this theorem to holomorphic mappings of the open unit ball into an arbitrary convex domain. Other multidimensional analogs of Rogosinski’s theorem as well as some applications to dynamical systems are...

Painlevé null sets, dimension and compact embedding of weighted holomorphic spaces

Alexander V. Abanin, Pham Trong Tien (2012)

Studia Mathematica

Similarity:

We obtain, in terms of associated weights, natural criteria for compact embedding of weighted Banach spaces of holomorphic functions on a wide class of domains in the complex plane. Our study is based on a complete characterization of finite-dimensional weighted spaces and canonical weights for them. In particular, we show that for a domain whose complement is not a Painlevé null set each nontrivial space of holomorphic functions with O-growth condition is infinite-dimensional. ...

On weighted composition operators acting between weighted Bergman spaces of infinite order and weighted Bloch type spaces

Elke Wolf (2011)

Annales Polonici Mathematici

Similarity:

Let ϕ: → and ψ: → ℂ be analytic maps. They induce a weighted composition operator ψ C ϕ acting between weighted Bergman spaces of infinite order and weighted Bloch type spaces. Under some assumptions on the weights we give a characterization for such an operator to be bounded in terms of the weights involved as well as the functions ψ and ϕ

A set on which the local Łojasiewicz exponent is attained

Jacek Chądzyński, Tadeusz Krasiński (1997)

Annales Polonici Mathematici

Similarity:

Let U be a neighbourhood of 0 ∈ ℂⁿ. We show that for a holomorphic mapping F = ( f , . . . , f ) : U m , F(0) = 0, the Łojasiewicz exponent ₀(F) is attained on the set z ∈ U: f₁(z)·...·fₘ(z) = 0.

On locally convex extension of H in the unit ball and continuity of the Bergman projection

M. Jasiczak (2003)

Studia Mathematica

Similarity:

We define locally convex spaces LW and HW consisting of measurable and holomorphic functions in the unit ball, respectively, with the topology given by a family of weighted-sup seminorms. We prove that the Bergman projection is a continuous map from LW onto HW. These are the smallest spaces having this property. We investigate the topological and algebraic properties of HW.

A class of weighted convolution Fréchet algebras

Thomas Vils Pedersen (2010)

Banach Center Publications

Similarity:

For an increasing sequence (ωₙ) of algebra weights on ℝ⁺ we study various properties of the Fréchet algebra A(ω) = ⋂ ₙ L¹(ωₙ) obtained as the intersection of the weighted Banach algebras L¹(ωₙ). We show that every endomorphism of A(ω) is standard, if for all n ∈ ℕ there exists m ∈ ℕ such that ω m ( t ) / ω ( t ) as t → ∞. Moreover, we characterise the continuous derivations on this algebra: Let M(ωₙ) be the corresponding weighted measure algebras and let B(ω) = ⋂ ₙM(ωₙ). If for all n ∈ ℕ there exists...

On an integral-type operator from Privalov spaces to Bloch-type spaces

Xiangling Zhu (2011)

Annales Polonici Mathematici

Similarity:

Let H(B) denote the space of all holomorphic functions on the unit ball B of ℂⁿ. Let φ be a holomorphic self-map of B and g ∈ H(B) such that g(0) = 0. We study the integral-type operator C φ g f ( z ) = 0 1 f ( φ ( t z ) ) g ( t z ) d t / t , f ∈ H(B). The boundedness and compactness of C φ g from Privalov spaces to Bloch-type spaces and little Bloch-type spaces are studied

On the Banach-Stone problem

Jyh-Shyang Jeang, Ngai-Ching Wong (2003)

Studia Mathematica

Similarity:

Let X and Y be locally compact Hausdorff spaces, let E and F be Banach spaces, and let T be a linear isometry from C₀(X,E) into C₀(Y,F). We provide three new answers to the Banach-Stone problem: (1) T can always be written as a generalized weighted composition operator if and only if F is strictly convex; (2) if T is onto then T can be written as a weighted composition operator in a weak sense; and (3) if T is onto and F does not contain a copy of then T can be written as a weighted...

An extension theorem for separately holomorphic functions with analytic singularities

Marek Jarnicki, Peter Pflug (2003)

Annales Polonici Mathematici

Similarity:

Let D j k j be a pseudoconvex domain and let A j D j be a locally pluriregular set, j = 1,...,N. Put X : = j = 1 N A × . . . × A j - 1 × D j × A j + 1 × . . . × A N k + . . . + k N . Let U be an open connected neighborhood of X and let M ⊊ U be an analytic subset. Then there exists an analytic subset M̂ of the “envelope of holomorphy” X̂ of X with M̂ ∩ X ⊂ M such that for every function f separately holomorphic on X∖M there exists an f̂ holomorphic on X̂∖M̂ with f ̂ | X M = f . The result generalizes special cases which were studied in [Ökt 1998], [Ökt 1999], [Sic 2001], and [Jar-Pfl 2001]. ...

Preduals of spaces of vector-valued holomorphic functions

Christopher Boyd (2003)

Czechoslovak Mathematical Journal

Similarity:

For U a balanced open subset of a Fréchet space E and F a dual-Banach space we introduce the topology τ γ on the space ( U , F ) of holomorphic functions from U into F . This topology allows us to construct a predual for ( ( U , F ) , τ δ ) which in turn allows us to investigate the topological structure of spaces of vector-valued holomorphic functions. In particular, we are able to give necessary and sufficient conditions for the equivalence and compatibility of various topologies on spaces of vector-valued holomorphic...

Contracting rigid germs in higher dimensions

Matteo Ruggiero (2013)

Annales de l’institut Fourier

Similarity:

Following Favre, we define a holomorphic germ f : ( d , 0 ) ( d , 0 ) to be rigid if the union of the critical set of all iterates has simple normal crossing singularities. We give a partial classification of contracting rigid germs in arbitrary dimensions up to holomorphic conjugacy. Interestingly enough, we find new resonance phenomena involving the differential of f and its linear action on the fundamental group of the complement of the critical set.

Embeddings of doubling weighted Besov spaces

Dorothee D. Haroske, Philipp Skandera (2014)

Banach Center Publications

Similarity:

We study continuous embeddings of Besov spaces of type B p , q s ( , w ) , where s ∈ ℝ, 0 < p < ∞, 0 < q ≤ ∞, and the weight w is doubling. This approach generalises recent results about embeddings of Muckenhoupt weighted Besov spaces. Our main argument relies on appropriate atomic decomposition techniques of such weighted spaces; here we benefit from earlier results by Bownik. In addition, we discuss some other related weight classes briefly and compare corresponding results.

Existence of solutions to the (rot,div)-system in L₂-weighted spaces

Wojciech M. Zajączkowski (2009)

Applicationes Mathematicae

Similarity:

The existence of solutions to the elliptic problem rot v = w, div v = 0 in Ω ⊂ ℝ³, v · n ̅ | S = 0 , S = ∂Ω, in weighted Hilbert spaces is proved. It is assumed that Ω contains an axis L and the weight is a negative power of the distance to the axis. The main part of the proof is devoted to examining solutions in a neighbourhood of L. Their existence in Ω follows by regularization.