Displaying similar documents to “The Hypercyclicity Criterion for sequences of operators”

Dieudonné operators on the space of Bochner integrable functions

Marian Nowak (2011)

Banach Center Publications

Similarity:

A bounded linear operator between Banach spaces is called a Dieudonné operator ( = weakly completely continuous operator) if it maps weakly Cauchy sequences to weakly convergent sequences. Let (Ω,Σ,μ) be a finite measure space, and let X and Y be Banach spaces. We study Dieudonné operators T: L¹(X) → Y. Let i : L ( X ) L ¹ ( X ) stand for the canonical injection. We show that if X is almost reflexive and T: L¹(X) → Y is a Dieudonné operator, then T i : L ( X ) Y is a weakly compact operator. Moreover, we obtain that...

Absolutely continuous linear operators on Köthe-Bochner spaces

(2011)

Banach Center Publications

Similarity:

Let E be a Banach function space over a finite and atomless measure space (Ω,Σ,μ) and let ( X , | | · | | X ) and ( Y , | | · | | Y ) be real Banach spaces. A linear operator T acting from the Köthe-Bochner space E(X) to Y is said to be absolutely continuous if | | T ( 1 A f ) | | Y 0 whenever μ(Aₙ) → 0, (Aₙ) ⊂ Σ. In this paper we examine absolutely continuous operators from E(X) to Y. Moreover, we establish relationships between different classes of linear operators from E(X) to Y.

Weak precompactness and property (V*) in spaces of compact operators

Ioana Ghenciu (2015)

Colloquium Mathematicae

Similarity:

We give sufficient conditions for subsets of compact operators to be weakly precompact. Let L w * ( E * , F ) (resp. K w * ( E * , F ) ) denote the set of all w* - w continuous (resp. w* - w continuous compact) operators from E* to F. We prove that if H is a subset of K w * ( E * , F ) such that H(x*) is relatively weakly compact for each x* ∈ E* and H*(y*) is weakly precompact for each y* ∈ F*, then H is weakly precompact. We also prove the following results: If E has property (wV*) and F has property (V*), then K w * ( E * , F ) has property (wV*). Suppose...

Operators with hypercyclic Cesaro means

Fernando León-Saavedra (2002)

Studia Mathematica

Similarity:

An operator T on a Banach space ℬ is said to be hypercyclic if there exists a vector x such that the orbit T x n 1 is dense in ℬ. Hypercyclicity is a strong kind of cyclicity which requires that the linear span of the orbit is dense in ℬ. If the arithmetic means of the orbit of x are dense in ℬ then the operator T is said to be Cesàro-hypercyclic. Apparently Cesàro-hypercyclicity is a strong version of hypercyclicity. We prove that an operator is Cesàro-hypercyclic if and only if there exists...

Representing non-weakly compact operators

Manuel González, Eero Saksman, Hans-Olav Tylli (1995)

Studia Mathematica

Similarity:

For each S ∈ L(E) (with E a Banach space) the operator R(S) ∈ L(E**/E) is defined by R(S)(x** + E) = S**x** + E(x** ∈ E**). We study mapping properties of the correspondence S → R(S), which provides a representation R of the weak Calkin algebra L(E)/W(E) (here W(E) denotes the weakly compact operators on E). Our results display strongly varying behaviour of R. For instance, there are no non-zero compact operators in Im(R) in the case of L 1 and C(0,1), but R(L(E)/W(E)) identifies isometrically...

Multiple summing operators on l p spaces

Dumitru Popa (2014)

Studia Mathematica

Similarity:

We use the Maurey-Rosenthal factorization theorem to obtain a new characterization of multiple 2-summing operators on a product of l p spaces. This characterization is used to show that multiple s-summing operators on a product of l p spaces with values in a Hilbert space are characterized by the boundedness of a natural multilinear functional (1 ≤ s ≤ 2). We use these results to show that there exist many natural multiple s-summing operators T : l 4 / 3 × l 4 / 3 l such that none of the associated linear operators...

The Embeddability of c₀ in Spaces of Operators

Ioana Ghenciu, Paul Lewis (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Results of Emmanuele and Drewnowski are used to study the containment of c₀ in the space K w * ( X * , Y ) , as well as the complementation of the space K w * ( X * , Y ) of w*-w compact operators in the space L w * ( X * , Y ) of w*-w operators from X* to Y.

Regularity of domains of parameterized families of closed linear operators

Teresa Winiarska, Tadeusz Winiarski (2003)

Annales Polonici Mathematici

Similarity:

The purpose of this paper is to provide a method of reduction of some problems concerning families A t = ( A ( t ) ) t of linear operators with domains ( t ) t to a problem in which all the operators have the same domain . To do it we propose to construct a family ( Ψ t ) t of automorphisms of a given Banach space X having two properties: (i) the mapping t Ψ t is sufficiently regular and (ii) Ψ t ( ) = t for t ∈ . Three effective constructions are presented: for elliptic operators of second order with the Robin boundary condition...

Isomorphic properties in spaces of compact operators

Ioana Ghenciu (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We introduce the definition of p -limited completely continuous operators, 1 p < . The question of whether a space of operators has the property that every p -limited subset is relative compact when the dual of the domain and the codomain have this property is studied using p -limited completely continuous evaluation operators.

Sequences of differential operators: exponentials, hypercyclicity and equicontinuity

L. Bernal-González, J. A. Prado-Tendero (2001)

Annales Polonici Mathematici

Similarity:

An eigenvalue criterion for hypercyclicity due to the first author is improved. As a consequence, some new sufficient conditions for a sequence of infinite order linear differential operators to be hypercyclic on the space of holomorphic functions on certain domains of N are shown. Moreover, several necessary conditions are furnished. The equicontinuity of a family of operators as above is also studied, and it is characterized if the domain is N . The results obtained extend or improve...

More classes of non-orbit-transitive operators

Carl Pearcy, Lidia Smith (2010)

Studia Mathematica

Similarity:

In [JKP] and its sequel [FPS] the authors initiated a program whose (announced) goal is to eventually show that no operator in ℒ(ℋ) is orbit-transitive. In [JKP] it is shown, for example, that if T ∈ ℒ(ℋ) and the essential (Calkin) norm of T is equal to its essential spectral radius, then no compact perturbation of T is orbit-transitive, and in [FPS] this result is extended to say that no element of this same class of operators is weakly orbit-transitive. In the present note we show...

Weakly precompact operators on C b ( X , E ) with the strict topology

Juliusz Stochmal (2016)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

Let X be a completely regular Hausdorff space, E and F be Banach spaces. Let C b ( X , E ) be the space of all E-valued bounded continuous functions on X, equipped with the strict topology β. We study weakly precompact operators T : C b ( X , E ) F . In particular, we show that if X is a paracompact k-space and E contains no isomorphic copy of l¹, then every strongly bounded operator T : C b ( X , E ) F is weakly precompact.

On hyponormal operators in Krein spaces

Kevin Esmeral, Osmin Ferrer, Jorge Jalk, Boris Lora Castro (2019)

Archivum Mathematicum

Similarity:

In this paper the hyponormal operators on Krein spaces are introduced. We state conditions for the hyponormality of bounded operators focusing, in particular, on those operators T for which there exists a fundamental decomposition 𝕂 = 𝕂 + 𝕂 - of the Krein space 𝕂 with 𝕂 + and 𝕂 - invariant under T .

On the class of positive disjoint weak p -convergent operators

Abderrahman Retbi (2024)

Mathematica Bohemica

Similarity:

We introduce and study the disjoint weak p -convergent operators in Banach lattices, and we give a characterization of it in terms of sequences in the positive cones. As an application, we derive the domination and the duality properties of the class of positive disjoint weak p -convergent operators. Next, we examine the relationship between disjoint weak p -convergent operators and disjoint p -convergent operators. Finally, we characterize order bounded disjoint weak p -convergent operators...

Non-hyperreflexive reflexive spaces of operators

Roman V. Bessonov, Janko Bračič, Michal Zajac (2011)

Studia Mathematica

Similarity:

We study operators whose commutant is reflexive but not hyperreflexive. We construct a C₀ contraction and a Jordan block operator S B associated with a Blaschke product B which have the above mentioned property. A sufficient condition for hyperreflexivity of S B is given. Some other results related to hyperreflexivity of spaces of operators that could be interesting in themselves are proved.

A new characterization of Anderson’s inequality in C 1 -classes

S. Mecheri (2007)

Czechoslovak Mathematical Journal

Similarity:

Let be a separable infinite dimensional complex Hilbert space, and let ( ) denote the algebra of all bounded linear operators on into itself. Let A = ( A 1 , A 2 , , A n ) , B = ( B 1 , B 2 , , B n ) be n -tuples of operators in ( ) ; we define the elementary operators Δ A , B ( ) ( ) by Δ A , B ( X ) = i = 1 n A i X B i - X . In this paper, we characterize the class of pairs of operators A , B ( ) satisfying Putnam-Fuglede’s property, i.e, the class of pairs of operators A , B ( ) such that i = 1 n B i T A i = T implies i = 1 n A i * T B i * = T for all T 𝒞 1 ( ) (trace class operators). The main result is the equivalence between this property and the...

Compact operators whose adjoints factor through subspaces of l p

Deba P. Sinha, Anil K. Karn (2002)

Studia Mathematica

Similarity:

For p ≥ 1, a subset K of a Banach space X is said to be relatively p-compact if K n = 1 α x : α B a l l ( l p ' ) , where p’ = p/(p-1) and x l p s ( X ) . An operator T ∈ B(X,Y) is said to be p-compact if T(Ball(X)) is relatively p-compact in Y. Similarly, weak p-compactness may be defined by considering x l p w ( X ) . It is proved that T is (weakly) p-compact if and only if T* factors through a subspace of l p in a particular manner. The normed operator ideals ( K p , κ p ) of p-compact operators and ( W p , ω p ) of weakly p-compact operators, arising from these factorizations,...

Order bounded composition operators on the Hardy spaces and the Nevanlinna class

Nizar Jaoua (1999)

Studia Mathematica

Similarity:

We study the order boundedness of composition operators induced by holomorphic self-maps of the open unit disc D. We consider these operators first on the Hardy spaces H p 0 < p < ∞ and then on the Nevanlinna class N. Given a non-negative increasing function h on [0,∞[, a composition operator is said to be X,Lh-order bounded (we write (X,Lh)-ob) with X = H p or X = N if its composition with the map f ↦ f*, where f* denotes the radial limit of f, is order bounded from X into L h . We give...

Spaces of compact operators on C ( 2 × [ 0 , α ] ) spaces

Elói Medina Galego (2011)

Colloquium Mathematicae

Similarity:

We classify, up to isomorphism, the spaces of compact operators (E,F), where E and F are the Banach spaces of all continuous functions defined on the compact spaces 2 × [ 0 , α ] , the topological products of Cantor cubes 2 and intervals of ordinal numbers [0,α].

Interpolation by elementary operators

Bojan Magajna (1993)

Studia Mathematica

Similarity:

Given two n-tuples a = ( a 1 , . . . , a n ) and b = ( b 1 , . . . , b n ) of bounded linear operators on a Hilbert space the question of when there exists an elementary operator E such that E a j = b j for all j =1,...,n, is studied. The analogous question for left multiplications (instead of elementary operators) is answered in any C*-algebra A, as a consequence of the characterization of closed left A-submodules in A n .