Displaying similar documents to “Convergence to stationary solutions in a model of self-gravitating systems”

Stationary solutions of the generalized Smoluchowski-Poisson equation

Robert Stańczy (2008)

Banach Center Publications

Similarity:

The existence of steady states in the microcanonical case for a system describing the interaction of gravitationally attracting particles with a self-similar pressure term is proved. The system generalizes the Smoluchowski-Poisson equation. The presented theory covers the case of the model with diffusion that obeys the Fermi-Dirac statistic.

The quasineutral limit problem in semiconductors sciences

Ling Hsiao (2004)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

The mathematical analysis on various mathematical models arisen in semiconductor science has attracted a lot of attention in both applied mathematics and semiconductor physics. It is important to understand the relations between the various models which are different kind of nonlinear system of P.D.Es. The emphasis of this paper is on the relation between the drift-diffusion model and the diffusion equation. This is given by a quasineutral limit from the DD model to the diffusion equation. ...

Macroscopic models of collective motion and self-organization

Pierre Degond, Amic Frouvelle, Jian-Guo Liu, Sebastien Motsch, Laurent Navoret (2012-2013)

Séminaire Laurent Schwartz — EDP et applications

Similarity:

In this paper, we review recent developments on the derivation and properties of macroscopic models of collective motion and self-organization. The starting point is a model of self-propelled particles interacting with its neighbors through alignment. We successively derive a mean-field model and its hydrodynamic limit. The resulting macroscopic model is the Self-Organized Hydrodynamics (SOH). We review the available existence results and known properties of the SOH model and discuss...

Fragmentation-Coagulation Models of Phytoplankton

Ryszard Rudnicki, Radosław Wieczorek (2006)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We present two new models of the dynamics of phytoplankton aggregates. The first one is an individual-based model. Passing to infinity with the number of individuals, we obtain an Eulerian model. This model describes the evolution of the density of the spatial-mass distribution of aggregates. We show the existence and uniqueness of solutions of the evolution equation.

Stabilization of walls for nano-wires of finite length

Gilles Carbou, Stéphane Labbé (2012)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

In this paper we study a one dimensional model of ferromagnetic nano-wires of finite length. First we justify the model by Γ-convergence arguments. Furthermore we prove the existence of wall profiles. These walls being unstable, we stabilize them by the mean of an applied magnetic field.

Stabilization of walls for nano-wires of finite length

Gilles Carbou, Stéphane Labbé (2012)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

In this paper we study a one dimensional model of ferromagnetic nano-wires of finite length. First we justify the model by Γ-convergence arguments. Furthermore we prove the existence of wall profiles. These walls being unstable, we stabilize them by the mean of an applied magnetic field.

Stabilization of walls for nano-wires of finite length

Gilles Carbou, Stéphane Labbé (2012)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

In this paper we study a one dimensional model of ferromagnetic nano-wires of finite length. First we justify the model by Γ-convergence arguments. Furthermore we prove the existence of wall profiles. These walls being unstable, we stabilize them by the mean of an applied magnetic field.

A Discrete Model For Pattern Formation In Volatile Thin Films

M. Malik-Garbi, O. Agam (2012)

Mathematical Modelling of Natural Phenomena

Similarity:

We introduce a model, similar to diffusion limited aggregation (DLA), which serves as a discrete analog of the continuous dynamics of evaporation of thin liquid films. Within mean field approximation the dynamics of this model, averaged over many realizations of the growing cluster, reduces to that of the idealized evaporation model in which surface tension is neglected. However fluctuations beyond the mean field level play an important ...

Modification of Bikerman model with specific ion sizes

Tzyy-Leng Horng, Ping-Hsuan Tsai, Tai-Chia Lin (2017)

Molecular Based Mathematical Biology

Similarity:

Classical Poisson-Boltzman and Poisson-Nernst-Planck models can only work when ion concentrations are very dilute, which often mismatches experiments. Researchers have been working on the modification to include finite-size effect of ions, which is non-negelible when ion concentrations are not dilute. One of modified models with steric effect is Bikerman model, which is rather popular nowadays. It is based on the consideration of ion size by putting additional entropy term for solvent...

Stationary solutions of aerotaxis equations

Piotr Knosalla, Tadeusz Nadzieja (2015)

Applicationes Mathematicae

Similarity:

We study the existence and uniqueness of the steady state in a model describing the evolution of density of bacteria and oxygen dissolved in water filling a capillary. The steady state is a stationary solution of a nonlinear and nonlocal problem which depends on the energy function and contains two parameters: the total mass of the colony of bacteria and the concentration (or flux) of oxygen at the end of the capillary. The existence and uniqueness of solutions depend on relations between...

Numerical approximation of self-consistent Vlasov models for low-frequency electromagnetic phenomena

Nicolas Besse, Norbert J. mauser, Eric Sonnendrücker (2007)

International Journal of Applied Mathematics and Computer Science

Similarity:

We present a new numerical method to solve the Vlasov-Darwin and Vlasov-Poisswell systems which are approximations of the Vlasov-Maxwell equation in the asymptotic limit of the infinite speed of light. These systems model low-frequency electromagnetic phenomena in plasmas, and thus "light waves" are somewhat supressed, which in turn allows thenumerical discretization to dispense with the Courant-Friedrichs-Lewy condition on the time step. We construct a numerical scheme based on semi-Lagrangian...