Displaying similar documents to “Boundedness of higher order commutators of oscillatory singular integrals with rough kernels”

Non-homogeneous strongly singular integrals

Bassam Shayya (2008)

Studia Mathematica

Similarity:

We study the L p mapping properties of a family of strongly singular oscillatory integral operators on ℝⁿ which are non-homogeneous in the sense that their kernels have isotropic oscillations but non-isotropic singularities.

Boundedness of certain oscillatory singular integrals

Dashan Fan, Yibiao Pan (1995)

Studia Mathematica

Similarity:

We prove the L p and H 1 boundedness of oscillatory singular integral operators defined by Tf = p.v.Ω∗f, where Ω ( x ) = e i Φ ( x ) K ( x ) , K(x) is a Calderón-Zygmund kernel, and Φ satisfies certain growth conditions.

Ψ-pseudodifferential operators and estimates for maximal oscillatory integrals

Carlos E. Kenig, Wolfgang Staubach (2007)

Studia Mathematica

Similarity:

We define a class of pseudodifferential operators with symbols a(x,ξ) without any regularity assumptions in the x variable and explore their L p boundedness properties. The results are applied to obtain estimates for certain maximal operators associated with oscillatory singular integrals.

On the Existence of Oscillatory Solutions of the Second Order Nonlinear ODE

Martin Rohleder (2012)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

The paper investigates the singular initial problem[4pt] ( p ( t ) u ' ( t ) ) ' + q ( t ) f ( u ( t ) ) = 0 , u ( 0 ) = u 0 , u ' ( 0 ) = 0 [4pt] on the half-line [ 0 , ) . Here u 0 [ L 0 , L ] , where L 0 , 0 and L are zeros of f , which is locally Lipschitz continuous on . Function p is continuous on [ 0 , ) , has a positive continuous derivative on ( 0 , ) and p ( 0 ) = 0 . Function q is continuous on [ 0 , ) and positive on ( 0 , ) . For specific values u 0 we prove the existence and uniqueness of damped solutions of this problem. With additional conditions for f , p and q it is shown that the problem has for each specified...

Singular integrals with highly oscillating kernels on product spaces

Elena Prestini (2000)

Colloquium Mathematicae

Similarity:

We prove the L 2 ( 2 ) boundedness of the oscillatory singular integrals P 0 f ( x , y ) = D x e i ( M 2 ( x ) y ' + M 1 ( x ) x ' ) ο v e r x ' y ' f ( x - x ' , y - y ' ) d x ' d y ' for arbitrary real-valued L functions M 1 ( x ) , M 2 ( x ) and for rather general domains D x 2 whose dependence upon x satisfies no regularity assumptions.

Oscillation of third order differential equation with damping term

Miroslav Bartušek, Zuzana Došlá (2015)

Czechoslovak Mathematical Journal

Similarity:

We study asymptotic and oscillatory properties of solutions to the third order differential equation with a damping term x ' ' ' ( t ) + q ( t ) x ' ( t ) + r ( t ) | x | λ ( t ) sgn x ( t ) = 0 , t 0 . We give conditions under which every solution of the equation above is either oscillatory or tends to zero. In case λ 1 and if the corresponding second order differential equation h ' ' + q ( t ) h = 0 is oscillatory, we also study Kneser solutions vanishing at infinity and the existence of oscillatory solutions.

Generalized Hörmander conditions and weighted endpoint estimates

María Lorente, José María Martell, Carlos Pérez, María Silvina Riveros (2009)

Studia Mathematica

Similarity:

We consider two-weight estimates for singular integral operators and their commutators with bounded mean oscillation functions. Hörmander type conditions in the scale of Orlicz spaces are assumed on the kernels. We prove weighted weak-type estimates for pairs of weights (u,Su) where u is an arbitrary nonnegative function and S is a maximal operator depending on the smoothness of the kernel. We also obtain sufficient conditions on a pair of weights (u,v) for the operators to be bounded...

On the oscillation of a class of linear homogeneous third order differential equations

N. Parhi, P. Das (1998)

Archivum Mathematicum

Similarity:

In this paper we have considered completely the equation y ' ' ' + a ( t ) y ' ' + b ( t ) y ' + c ( t ) y = 0 , ( * ) where a C 2 ( [ σ , ) , R ) , b C 1 ( [ σ , ) , R ) , c C ( [ σ , ) , R ) and σ R such that a ( t ) 0 , b ( t ) 0 and c ( t ) 0 . It has been shown that the set of all oscillatory solutions of (*) forms a two-dimensional subspace of the solution space of (*) provided that (*) has an oscillatory solution. This answers a question raised by S. Ahmad and A.  C. Lazer earlier.

Two-point oscillatory solutions to system with relay hysteresis and nonperiodic external disturbance

Alexander M. Kamachkin, Dmitriy K. Potapov, Victoria V. Yevstafyeva (2024)

Applications of Mathematics

Similarity:

We study an n -dimensional system of ordinary differential equations with a constant matrix, a relay-type nonlinearity, and an external disturbance in the right-hand side. We consider a nonideal relay characteristic. The external disturbance is described by the product of an exponential function and a sine function with an initial phase as a parameter. We assume the matrix of the linear part and the vector at the relay characteristic such that, by a nonsingular transformation, the system...