Displaying similar documents to “A simple-minded computation of heat kernels on Heisenberg groups”

Domain decomposition methods coupled with parareal for the transient heat equation in 1 and 2 spatial dimensions

Ladislav Foltyn, Dalibor Lukáš, Ivo Peterek (2020)

Applications of Mathematics

Similarity:

We present a parallel solution algorithm for the transient heat equation in one and two spatial dimensions. The problem is discretized in space by the lowest-order conforming finite element method. Further, a one-step time integration scheme is used for the numerical solution of the arising system of ordinary differential equations. For the latter, the parareal method decomposing the time interval into subintervals is employed. It leads to parallel solution of smaller time-dependent...

Heat kernel estimates for the Dirichlet fractional Laplacian

Zhen-Qing Chen, Panki Kim, Renming Song (2010)

Journal of the European Mathematical Society

Similarity:

We consider the fractional Laplacian - ( - Δ ) α / 2 on an open subset in d with zero exterior condition. We establish sharp two-sided estimates for the heat kernel of such a Dirichlet fractional Laplacian in C 1 , 1 open sets. This heat kernel is also the transition density of a rotationally symmetric α -stable process killed upon leaving a C 1 , 1 open set. Our results are the first sharp twosided estimates for the Dirichlet heat kernel of a non-local operator on open sets.

Regularity of sets with constant intrinsic normal in a class of Carnot groups

Marco Marchi (2014)

Annales de l’institut Fourier

Similarity:

In this Note, we define a class of stratified Lie groups of arbitrary step (that are called “groups of type ” throughout the paper), and we prove that, in these groups, sets with constant intrinsic normal are vertical halfspaces. As a consequence, the reduced boundary of a set of finite intrinsic perimeter in a group of type is rectifiable in the intrinsic sense (De Giorgi’s rectifiability theorem). This result extends the previous one proved by Franchi, Serapioni & Serra Cassano...

On absolutely-nilpotent of class k groups

Patrizia Longobardi, Trueman MacHenry, Mercede Maj, James Wiegold (1995)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

A group G in a variety V is said to be absolutely- V , and we write G A V , if central extensions by G are again in V . Absolutely-abelian groups have been classified by F. R. Beyl. In this paper we concentrate upon the class A N k of absolutely-nilpotent of class k groups. We prove some closure properties of the class A N k and we show that every nilpotent of class k group can be embedded in an A N k -gvoup. We describe all metacyclic A N k -groups and we characterize 2 -generator and infinite 3 -generator A N 2 -groups....

Heat kernel estimates for a class of higher order operators on Lie groups

Nick Dungey (2005)

Studia Mathematica

Similarity:

Let G be a Lie group of polynomial volume growth. Consider a differential operator H of order 2m on G which is a sum of even powers of a generating list A , . . . , A d ' of right invariant vector fields. When G is solvable, we obtain an algebraic condition on the list A , . . . , A d ' which is sufficient to ensure that the semigroup kernel of H satisfies global Gaussian estimates for all times. For G not necessarily solvable, we state an analytic condition on the list which is necessary and sufficient for global...

Radial Heat Diffusion from the Root of a Homogeneous Tree and the Combinatorics of Paths

Joel M. Cohen, Mauro Pagliacci, Massimo A. Picardello (2008)

Bollettino dell'Unione Matematica Italiana

Similarity:

We compute recursively the heat semigroup in a rooted homogeneous tree for the diffusion with radial (with respect to the root) but non-isotropic transition probabilities. This is the discrete analogue of the heat operator on the disc given by Δ + c r for some constant c that represents a drift towards (or away from) the origin.

Uniform analytic-Gevrey regularity of solutions to a semilinear heat equation

Todor Gramchev, Grzegorz Łysik (2008)

Banach Center Publications

Similarity:

We study the Gevrey regularity down to t = 0 of solutions to the initial value problem for a semilinear heat equation t u - Δ u = u M . The approach is based on suitable iterative fixed point methods in L p based Banach spaces with anisotropic Gevrey norms with respect to the time and the space variables. We also construct explicit solutions uniformly analytic in t ≥ 0 and x ∈ ℝⁿ for some conservative nonlinear terms with symmetries.

Optimal Convective Heat-Transport

Josef Dalík, Oto Přibyl (2011)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

The one-dimensional steady-state convection-diffusion problem for the unknown temperature y ( x ) of a medium entering the interval ( a , b ) with the temperature y min and flowing with a positive velocity v ( x ) is studied. The medium is being heated with an intensity corresponding to y max - y ( x ) for a constant y max > y min . We are looking for a velocity v ( x ) with a given average such that the outflow temperature y ( b ) is maximal and discuss the influence of the boundary condition at the point b on the “maximizing” function v ( x ) . ...

Sub-Laplacian with drift in nilpotent Lie groups

Camillo Melzi (2003)

Colloquium Mathematicae

Similarity:

We consider the heat kernel ϕ t corresponding to the left invariant sub-Laplacian with drift term in the first commutator of the Lie algebra, on a nilpotent Lie group. We improve the results obtained by G. Alexopoulos in [1], [2] proving the “exact Gaussian factor” exp(-|g|²/4(1+ε)t) in the large time upper Gaussian estimate for ϕ t . We also obtain a large time lower Gaussian estimate for ϕ t .

Inequalities involving heat potentials and Green functions

Neil A. Watson (2015)

Mathematica Bohemica

Similarity:

We take some well-known inequalities for Green functions relative to Laplace’s equation, and prove not only analogues of them relative to the heat equation, but generalizations of those analogues to the heat potentials of nonnegative measures on an arbitrary open set E whose supports are compact polar subsets of E . We then use the special case where the measure associated to the potential has point support, in the following situation. Given a nonnegative supertemperature on an open set...

Long-time asymptotics for the nonlinear heat equation with a fractional Laplacian in a ball

Vladimir Varlamov (2000)

Studia Mathematica

Similarity:

The nonlinear heat equation with a fractional Laplacian [ u t + ( - Δ ) α / 2 u = u 2 , 0 < α 2 ] , is considered in a unit ball B . Homogeneous boundary conditions and small initial conditions are examined. For 3/2 + ε₁ ≤ α ≤ 2, where ε₁ > 0 is small, the global-in-time mild solution from the space C ( [ 0 , ) , H κ ( B ) ) with κ < α - 1/2 is constructed in the form of an eigenfunction expansion series. The uniqueness is proved for 0 < κ < α - 1/2, and the higher-order long-time asymptotics is calculated.

Parallelepipeds, nilpotent groups and Gowers norms

Bernard Host, Bryna Kra (2008)

Bulletin de la Société Mathématique de France

Similarity:

In his proof of Szemerédi’s Theorem, Gowers introduced certain norms that are defined on a parallelepiped structure. A natural question is on which sets a parallelepiped structure (and thus a Gowers norm) can be defined. We focus on dimensions 2 and 3 and show when this possible, and describe a correspondence between the parallelepiped structures and nilpotent groups.