Displaying similar documents to “Heat-diffusion and Poisson integrals for Laguerre and special Hermite expansions on weighted L p spaces”

Weighted norm estimates for the maximal operator of the Laguerre functions heat diffusion semigroup

R. Macías, C. Segovia, J. L. Torrea (2006)

Studia Mathematica

Similarity:

We obtain weighted L p boundedness, with weights of the type y δ , δ > -1, for the maximal operator of the heat semigroup associated to the Laguerre functions, k α k , when the parameter α is greater than -1. It is proved that when -1 < α < 0, the maximal operator is of strong type (p,p) if p > 1 and 2(1+δ)/(2+α) < p < 2(1+δ)/(-α), and if α ≥ 0 it is of strong type for 1 < p ≤ ∞ and 2(1+δ)/(2+α) < p. The behavior at the end points of the intervals where there is strong...

Inequalities involving heat potentials and Green functions

Neil A. Watson (2015)

Mathematica Bohemica

Similarity:

We take some well-known inequalities for Green functions relative to Laplace’s equation, and prove not only analogues of them relative to the heat equation, but generalizations of those analogues to the heat potentials of nonnegative measures on an arbitrary open set E whose supports are compact polar subsets of E . We then use the special case where the measure associated to the potential has point support, in the following situation. Given a nonnegative supertemperature on an open set...

Prolongation of Poisson 2 -form on Weil bundles

Norbert Mahoungou Moukala, Basile Guy Richard Bossoto (2016)

Archivum Mathematicum

Similarity:

In this paper, M denotes a smooth manifold of dimension n , A a Weil algebra and M A the associated Weil bundle. When ( M , ω M ) is a Poisson manifold with 2 -form ω M , we construct the 2 -Poisson form ω M A A , prolongation on M A of the 2 -Poisson form ω M . We give a necessary and sufficient condition for that M A be an A -Poisson manifold.

Second order elliptic operators with complex bounded measurable coefficients in  L p , Sobolev and Hardy spaces

Steve Hofmann, Svitlana Mayboroda, Alan McIntosh (2011)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Let  L be a second order divergence form elliptic operator with complex bounded measurable coefficients. The operators arising in connection with L , such as the heat semigroup and Riesz transform, are not, in general, of Calderón-Zygmund type and exhibit behavior different from their counterparts built upon the Laplacian. The current paper aims at a thorough description of the properties of such operators in  L p , Sobolev, and some new Hardy spaces naturally associated to  L . First, we show...

Blow up for a completely coupled Fujita type reaction-diffusion system

Noureddine Igbida, Mokhtar Kirane (2002)

Colloquium Mathematicae

Similarity:

This paper provides blow up results of Fujita type for a reaction-diffusion system of 3 equations in the form u - Δ ( a 11 u ) = h ( t , x ) | v | p , v - Δ ( a 21 u ) - Δ ( a 22 v ) = k ( t , x ) | w | q , w - Δ ( a 31 u ) - Δ ( a 32 v ) - Δ ( a 33 w ) = l ( t , x ) | u | r , for x N , t > 0, p > 0, q > 0, r > 0, a i j = a i j ( t , x , u , v ) , under initial conditions u(0,x) = u₀(x), v(0,x) = v₀(x), w(0,x) = w₀(x) for x N , where u₀, v₀, w₀ are nonnegative, continuous and bounded functions. Subject to conditions on dependence on the parameters p, q, r, N and the growth of the functions h, k, l at infinity, we prove finite blow up time for every solution of the...

Canonical Poisson-Nijenhuis structures on higher order tangent bundles

P. M. Kouotchop Wamba (2014)

Annales Polonici Mathematici

Similarity:

Let M be a smooth manifold of dimension m>0, and denote by S c a n the canonical Nijenhuis tensor on TM. Let Π be a Poisson bivector on M and Π T the complete lift of Π on TM. In a previous paper, we have shown that ( T M , Π T , S c a n ) is a Poisson-Nijenhuis manifold. Recently, the higher order tangent lifts of Poisson manifolds from M to T r M have been studied and some properties were given. Furthermore, the canonical Nijenhuis tensors on T A M are described by A. Cabras and I. Kolář [Arch. Math. (Brno) 38 (2002),...

Tykhonov well-posedness of a heat transfer problem with unilateral constraints

Mircea Sofonea, Domingo A. Tarzia (2022)

Applications of Mathematics

Similarity:

We consider an elliptic boundary value problem with unilateral constraints and subdifferential boundary conditions. The problem describes the heat transfer in a domain D d and its weak formulation is in the form of a hemivariational inequality for the temperature field, denoted by 𝒫 . We associate to Problem 𝒫 an optimal control problem, denoted by 𝒬 . Then, using appropriate Tykhonov triples, governed by a nonlinear operator G and a convex K ˜ , we provide results concerning the well-posedness...

Poisson's equation and characterizations of reflexivity of Banach spaces

Vladimir P. Fonf, Michael Lin, Przemysław Wojtaszczyk (2011)

Colloquium Mathematicae

Similarity:

Let X be a Banach space with a basis. We prove that X is reflexive if and only if every power-bounded linear operator T satisfies Browder’s equality x X : s u p n | | k = 1 n T k x | | < = (I-T)X . We then deduce that X (with a basis) is reflexive if and only if every strongly continuous bounded semigroup T t : t 0 with generator A satisfies A X = x X : s u p s > 0 | | 0 s T t x d t | | < . The range (I-T)X (respectively, AX for continuous time) is the space of x ∈ X for which Poisson’s equation (I-T)y = x (Ay = x in continuous time) has a solution y ∈ X; the above equalities...

Nonanalyticity of solutions to t u = ² x u + u ²

Grzegorz Łysik (2003)

Colloquium Mathematicae

Similarity:

It is proved that the solution to the initial value problem t u = ² x u + u ² , u(0,x) = 1/(1+x²), does not belong to the Gevrey class G s in time for 0 ≤ s < 1. The proof is based on an estimation of a double sum of products of binomial coefficients.

Self-similar solutions in reaction-diffusion systems

Joanna Rencławowicz (2003)

Banach Center Publications

Similarity:

In this paper we examine self-similar solutions to the system u i t - d i Δ u i = k = 1 m u k p k i , i = 1,…,m, x N , t > 0, u i ( 0 , x ) = u 0 i ( x ) , i = 1,…,m, x N , where m > 1 and p k i > 0 , to describe asymptotics near the blow up point.

Total blow-up of a quasilinear heat equation with slow-diffusion for non-decaying initial data

Amy Poh Ai Ling, Masahiko Shimojō (2019)

Mathematica Bohemica

Similarity:

We consider solutions of quasilinear equations u t = Δ u m + u p in N with the initial data u 0 satisfying 0 < u 0 < M and lim | x | u 0 ( x ) = M for some constant M > 0 . It is known that if 0 < m < p with p > 1 , the blow-up set is empty. We find solutions u that blow up throughout N when m > p > 1 .

Homogenization of a three-phase composites of double-porosity type

Ahmed Boughammoura, Yousra Braham (2021)

Czechoslovak Mathematical Journal

Similarity:

In this work we consider a diffusion problem in a periodic composite having three phases: matrix, fibers and interphase. The heat conductivities of the medium vary periodically with a period of size ε β ( ε > 0 and β > 0 ) in the transverse directions of the fibers. In addition, we assume that the conductivity of the interphase material and the anisotropy contrast of the material in the fibers are of the same order ε 2 (the so-called double-porosity type scaling) while the matrix material has a conductivity...

Porous medium equation and fast diffusion equation as gradient systems

Samuel Littig, Jürgen Voigt (2015)

Czechoslovak Mathematical Journal

Similarity:

We show that the Porous Medium Equation and the Fast Diffusion Equation, u ˙ - Δ u m = f , with m ( 0 , ) , can be modeled as a gradient system in the Hilbert space H - 1 ( Ω ) , and we obtain existence and uniqueness of solutions in this framework. We deal with bounded and certain unbounded open sets Ω n and do not require any boundary regularity. Moreover, the approach is used to discuss the asymptotic behaviour and order preservation of solutions.

One-parameter contractions of Lie-Poisson brackets

Oksana Yakimova (2014)

Journal of the European Mathematical Society

Similarity:

We consider contractions of Lie and Poisson algebras and the behaviour of their centres under contractions. A polynomial Poisson algebra 𝒜 = 𝕂 [ 𝔸 n ] is said to be of Kostant type, if its centre Z ( 𝒜 ) is freely generated by homogeneous polynomials F 1 , ... , F r such that they give Kostant’s regularity criterion on 𝔸 n ( d x F i are linear independent if and only if the Poisson tensor has the maximal rank at x ). If the initial Poisson algebra is of Kostant type and F i satisfy a certain degree-equality, then the contraction...

Noncommutative del Pezzo surfaces and Calabi-Yau algebras

Pavel Etingof, Victor Ginzburg (2010)

Journal of the European Mathematical Society

Similarity:

The hypersurface in 3 with an isolated quasi-homogeneous elliptic singularity of type E ˜ r , r = 6 , 7 , 8 , has a natural Poisson structure. We show that the family of del Pezzo surfaces of the corresponding type E r provides a semiuniversal Poisson deformation of that Poisson structure. We also construct a deformation-quantization of the coordinate ring of such a del Pezzo surface. To this end, we first deform the polynomial algebra [ x 1 , x 2 , x 3 ] to a noncommutative algebra with generators x 1 , x 2 , x 3 and the following 3 relations...

Involutivity of truncated microsupports

Masaki Kashiwara, Térésa Monteiro Fernandes, Pierre Schapira (2003)

Bulletin de la Société Mathématique de France

Similarity:

Using a result of J.-M. Bony, we prove the weak involutivity of truncated microsupports. More precisely, given a sheaf F on a real manifold and k , if two functions vanish on SS k ( F ) , then so does their Poisson bracket.

Property C for ODE and Applications to an Inverse Problem for a Heat Equation

A. G. Ramm (2009)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let j : = - d ² / d x ² + k ² q j ( x ) , k = const > 0, j = 1,2, 0 < e s s i n f q j ( x ) e s s s u p q j ( x ) < . Suppose that (*) 0 1 p ( x ) u ( x , k ) u ( x , k ) d x = 0 for all k > 0, where p is an arbitrary fixed bounded piecewise-analytic function on [0,1], which changes sign finitely many times, and u j solves the problem j u j = 0 , 0 ≤ x ≤ 1, u j ' ( 0 , k ) = 0 , u j ( 0 , k ) = 1 . It is proved that (*) implies p = 0. This result is applied to an inverse problem for a heat equation.