Displaying similar documents to “On stable currents in positively pinched curved hypersurfaces”

Stable solutions of Δ u = f ( u ) in N

Louis Dupaigne, Alberto Farina (2010)

Journal of the European Mathematical Society

Similarity:

Several Liouville-type theorems are presented for stable solutions of the equation - Δ u = f ( u ) in N , where f > 0 is a general convex, nondecreasing function. Extensions to solutions which are merely stable outside a compact set are discussed.

Complete noncompact submanifolds with flat normal bundle

Hai-Ping Fu (2016)

Annales Polonici Mathematici

Similarity:

Let Mⁿ (n ≥ 3) be an n-dimensional complete super stable minimal submanifold in n + p with flat normal bundle. We prove that if the second fundamental form A of M satisfies M i | A | α < , where α ∈ [2(1 - √(2/n)), 2(1 + √(2/n))], then M is an affine n-dimensional plane. In particular, if n ≤ 8 and M | A | d < , d = 1,3, then M is an affine n-dimensional plane. Moreover, complete strongly stable hypersurfaces with constant mean curvature and finite L α -norm curvature in ℝ⁷ are considered.

Convergence to stable laws and a local limit theorem for stochastic recursions

Mariusz Mirek (2010)

Colloquium Mathematicae

Similarity:

We consider the random recursion X x = M X n - 1 x + Q + N ( X n - 1 x ) , where x ∈ ℝ and (Mₙ,Qₙ,Nₙ) are i.i.d., Qₙ has a heavy tail with exponent α > 0, the tail of Mₙ is lighter and N ( X n - 1 x ) is smaller at infinity, than M X n - 1 x . Using the asymptotics of the stationary solutions we show that properly normalized Birkhoff sums S x = k = 0 n X k x converge weakly to an α-stable law for α ∈ (0,2]. The related local limit theorem is also proved.

A half-space type property in the Euclidean sphere

Marco Antonio Lázaro Velásquez (2022)

Archivum Mathematicum

Similarity:

We study the notion of strong r -stability for the context of closed hypersurfaces Σ n ( n 3 ) with constant ( r + 1 ) -th mean curvature H r + 1 immersed into the Euclidean sphere 𝕊 n + 1 , where r { 1 , ... , n - 2 } . In this setting, under a suitable restriction on the r -th mean curvature H r , we establish that there are no r -strongly stable closed hypersurfaces immersed in a certain region of 𝕊 n + 1 , a region that is determined by a totally umbilical sphere of 𝕊 n + 1 . We also provide a rigidity result for such hypersurfaces.

Regularity of stable solutions of p -Laplace equations through geometric Sobolev type inequalities

Daniele Castorina, Manel Sanchón (2015)

Journal of the European Mathematical Society

Similarity:

We prove a Sobolev and a Morrey type inequality involving the mean curvature and the tangential gradient with respect to the level sets of the function that appears in the inequalities. Then, as an application, we establish a priori estimates for semistable solutions of Δ p u = g ( u ) in a smooth bounded domain Ω n . In particular, we obtain new L r and W 1 , r bounds for the extremal solution u when the domain is strictly convex. More precisely, we prove that u L ( Ω ) if n p + 2 and u L n p n - p - 2 ( Ω ) W 0 1 , p ( Ω ) if n > p + 2 .

A characterization of n-dimensional hypersurfaces in R n + 1 with commuting curvature operators

Yulian T. Tsankov (2005)

Banach Center Publications

Similarity:

Let Mⁿ be a hypersurface in R n + 1 . We prove that two classical Jacobi curvature operators J x and J y commute on Mⁿ, n > 2, for all orthonormal pairs (x,y) and for all points p ∈ M if and only if Mⁿ is a space of constant sectional curvature. Also we consider all hypersurfaces with n ≥ 4 satisfying the commutation relation ( K x , y K z , u ) ( u ) = ( K z , u K x , y ) ( u ) , where K x , y ( u ) = R ( x , y , u ) , for all orthonormal tangent vectors x,y,z,w and for all points p ∈ M.

Universal stability of Banach spaces for ε -isometries

Lixin Cheng, Duanxu Dai, Yunbai Dong, Yu Zhou (2014)

Studia Mathematica

Similarity:

Let X, Y be real Banach spaces and ε > 0. A standard ε-isometry f: X → Y is said to be (α,γ)-stable (with respect to T : L ( f ) s p a n ¯ f ( X ) X for some α,γ > 0) if T is a linear operator with ||T|| ≤ α such that Tf- Id is uniformly bounded by γε on X. The pair (X,Y) is said to be stable if every standard ε-isometry f: X → Y is (α,γ)-stable for some α,γ > 0. The space X[Y] is said to be universally left [right]-stable if (X,Y) is always stable for every Y[X]. In this paper, we show that universally...

Hypersurfaces with free boundary and large constant mean curvature: concentration along submanifolds

Mouhamed Moustapha Fall, Fethi Mahmoudi (2008)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

Given a domain Ω of m + 1 and a k -dimensional non-degenerate minimal submanifold K of Ω with 1 k m - 1 , we prove the existence of a family of embedded constant mean curvature hypersurfaces in Ω which as their mean curvature tends to infinity concentrate along K and intersecting Ω perpendicularly along their boundaries.

A short note on f -biharmonic hypersurfaces

Selcen Y. Perktaş, Bilal E. Acet, Adara M. Blaga (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In the present paper we give some properties of f -biharmonic hypersurfaces in real space forms. By using the f -biharmonic equation for a hypersurface of a Riemannian manifold, we characterize the f -biharmonicity of constant mean curvature and totally umbilical hypersurfaces in a Riemannian manifold and, in particular, in a real space form. As an example, we consider f -biharmonic vertical cylinders in S 2 × .

New characterizations of linear Weingarten hypersurfaces immersed in the hyperbolic space

Cícero P. Aquino, Henrique F. de Lima (2015)

Archivum Mathematicum

Similarity:

In this paper, we deal with complete linear Weingarten hypersurfaces immersed in the hyperbolic space n + 1 , that is, complete hypersurfaces of n + 1 whose mean curvature H and normalized scalar curvature R satisfy R = a H + b for some a , b . In this setting, under appropriate restrictions on the mean curvature and on the norm of the traceless part of the second fundamental form, we prove that such a hypersurface must be either totally umbilical or isometric to a hyperbolic cylinder of n + 1 . Furthermore,...

Simultaneous stabilization in A ( )

Raymond Mortini, Brett D. Wick (2009)

Studia Mathematica

Similarity:

We study the problem of simultaneous stabilization for the algebra A ( ) . Invertible pairs ( f j , g j ) , j = 1,..., n, in a commutative unital algebra are called simultaneously stabilizable if there exists a pair (α,β) of elements such that α f j + β g j is invertible in this algebra for j = 1,..., n. For n = 2, the simultaneous stabilization problem admits a positive solution for any data if and only if the Bass stable rank of the algebra is one. Since A ( ) has stable rank two, we are faced here with a different...

A characterization of a certain real hypersurface of type ( A 2 ) in a complex projective space

Byung Hak Kim, In-Bae Kim, Sadahiro Maeda (2017)

Czechoslovak Mathematical Journal

Similarity:

In the class of real hypersurfaces M 2 n - 1 isometrically immersed into a nonflat complex space form M ˜ n ( c ) of constant holomorphic sectional curvature c ( 0 ) which is either a complex projective space P n ( c ) or a complex hyperbolic space H n ( c ) according as c > 0 or c < 0 , there are two typical examples. One is the class of all real hypersurfaces of type (A) and the other is the class of all ruled real hypersurfaces. Note that the former example are Hopf manifolds and the latter are non-Hopf manifolds....

On pathwise uniqueness for stochastic differential equations driven by stable Lévy processes

Nicolas Fournier (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We study a one-dimensional stochastic differential equation driven by a stable Lévy process of order α with drift and diffusion coefficients b , σ . When α ( 1 , 2 ) , we investigate pathwise uniqueness for this equation. When α ( 0 , 1 ) , we study another stochastic differential equation, which is equivalent in law, but for which pathwise uniqueness holds under much weaker conditions. We obtain various results, depending on whether α ( 0 , 1 ) or α ( 1 , 2 ) and on whether the driving stable process is symmetric or not. Our...

Lightlike hypersurfaces of an indefinite Kaehler manifold of a quasi-constant curvature

Dae Ho Jin, Jae Won Lee (2019)

Communications in Mathematics

Similarity:

We study lightlike hypersurfaces M of an indefinite Kaehler manifold M ¯ of quasi-constant curvature subject to the condition that the characteristic vector field ζ of M ¯ is tangent to M . First, we provide a new result for such a lightlike hypersurface. Next, we investigate such a lightlike hypersurface M of M ¯ such that (1) the screen distribution S ( T M ) is totally umbilical or (2) M is screen conformal.

Connected sequences of stable derived functors and their applications

Daniel Simson, Andrzej Tyc

Similarity:

CONTENTS1. Introduction........................................................................................................................................................................................................ 52. Category of complexes.................................................................................................................................................................................... 73. Left stable derived functors of covariant functors..........................................................................................................................................

Stable invariant subspaces for operators on Hilbert space

John B. Conway, Don Hadwin (1997)

Annales Polonici Mathematici

Similarity:

If T is a bounded operator on a separable complex Hilbert space ℋ, an invariant subspace ℳ for T is stable provided that whenever T n is a sequence of operators such that T n - T 0 , there is a sequence of subspaces n , with n in L a t T n for all n, such that P n P in the strong operator topology. If the projections converge in norm, ℳ is called a norm stable invariant subspace. This paper characterizes the stable invariant subspaces of the unilateral shift of finite multiplicity and normal operators. It also...

On vertex stability with regard to complete bipartite subgraphs

Aneta Dudek, Andrzej Żak (2010)

Discussiones Mathematicae Graph Theory

Similarity:

A graph G is called (H;k)-vertex stable if G contains a subgraph isomorphic to H ever after removing any of its k vertices. Q(H;k) denotes the minimum size among the sizes of all (H;k)-vertex stable graphs. In this paper we complete the characterization of ( K m , n ; 1 ) -vertex stable graphs with minimum size. Namely, we prove that for m ≥ 2 and n ≥ m+2, Q ( K m , n ; 1 ) = m n + m + n and K m , n * K as well as K m + 1 , n + 1 - e are the only ( K m , n ; 1 ) -vertex stable graphs with minimum size, confirming the conjecture of Dudek and Zwonek.

Stabilization of monomial maps in higher codimension

Jan-Li Lin, Elizabeth Wulcan (2014)

Annales de l’institut Fourier

Similarity:

A monomial self-map f on a complex toric variety is said to be k -stable if the action induced on the 2 k -cohomology is compatible with iteration. We show that under suitable conditions on the eigenvalues of the matrix of exponents of f , we can find a toric model with at worst quotient singularities where f is k -stable. If f is replaced by an iterate one can find a k -stable model as soon as the dynamical degrees λ k of f satisfy λ k 2 &gt; λ k - 1 λ k + 1 . On the other hand, we give examples of monomial maps f , where...