Displaying similar documents to “Failure of Nehari's theorem for multiplicative Hankel forms in Schatten classes”

Hankel forms and sums of random variables

Henry Helson (2006)

Studia Mathematica

Similarity:

A well known theorem of Nehari asserts on the circle group that bilinear forms in H² can be lifted to linear functionals on H¹. We show that this result can be extended to Hankel forms in infinitely many variables of a certain type. As a corollary we find a new proof that all the L p norms on the class of Steinhaus series are equivalent.

Hankel determinant for a class of analytic functions of complex order defined by convolution

S. M. El-Deeb, M. K. Aouf (2015)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

In this paper, we obtain the Fekete-Szego inequalities for the functions of complex order defined by convolution. Also, we find upper bounds for the second Hankel determinant | a 2 a 4 - a 3 2 | for functions belonging to the class S γ b ( g ( z ) ; A , B ) .

The quasi-canonical solution operator to ¯ restricted to the Fock-space

Georg Schneider (2005)

Czechoslovak Mathematical Journal

Similarity:

We consider the solution operator S μ , ( p , q ) L 2 ( μ ) ( p , q ) to the ¯ -operator restricted to forms with coefficients in μ = f f is entire and n | f ( z ) | 2 d μ ( z ) < . Here μ , ( p , q ) denotes ( p , q ) -forms with coefficients in μ , L 2 ( μ ) is the corresponding L 2 -space and μ is a suitable rotation-invariant absolutely continuous finite measure. We will develop a general solution formula S to ¯ . This solution operator will have the property S v ( p , q ) v ( p , q + 1 ) . As an application of the solution formula we will be able to characterize compactness of the solution operator in terms of compactness...

Coefficient inequality for a function whose derivative has a positive real part of order α

Deekonda Vamshee Krishna, Thoutreddy Ramreddy (2015)

Mathematica Bohemica

Similarity:

The objective of this paper is to obtain sharp upper bound for the function f for the second Hankel determinant | a 2 a 4 - a 3 2 | , when it belongs to the class of functions whose derivative has a positive real part of order α ( 0 α < 1 ) , denoted by R T ( α ) . Further, an upper bound for the inverse function of f for the nonlinear functional (also called the second Hankel functional), denoted by | t 2 t 4 - t 3 2 | , was determined when it belongs to the same class of functions, using Toeplitz determinants.

Slant Hankel operators

Subhash Chander Arora, Ruchika Batra, M. P. Singh (2006)

Archivum Mathematicum

Similarity:

In this paper the notion of slant Hankel operator K ϕ , with symbol ϕ in L , on the space L 2 ( 𝕋 ) , 𝕋 being the unit circle, is introduced. The matrix of the slant Hankel operator with respect to the usual basis { z i : i } of the space L 2 is given by α i j = a - 2 i - j , where i = - a i z i is the Fourier expansion of ϕ . Some algebraic properties such as the norm, compactness of the operator K ϕ are discussed. Along with the algebraic properties some spectral properties of such operators are discussed. Precisely, it is proved that for...

On products of some Toeplitz operators on polyanalytic Fock spaces

Irène Casseli (2020)

Czechoslovak Mathematical Journal

Similarity:

The purpose of this paper is to study the Sarason’s problem on Fock spaces of polyanalytic functions. Namely, given two polyanalytic symbols f and g , we establish a necessary and sufficient condition for the boundedness of some Toeplitz products T f T g ¯ subjected to certain restriction on f and g . We also characterize this property in terms of the Berezin transform.

Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on a class of unbounded complete Reinhardt domains

Le He, Yanyan Tang (2024)

Czechoslovak Mathematical Journal

Similarity:

We consider a class of unbounded nonhyperbolic complete Reinhardt domains D n , m , k μ , p , s : = ( z , w 1 , , w m ) n × k 1 × × k m : w 1 2 p 1 e - μ 1 z s + + w m 2 p m e - μ m z s < 1 , where s , p 1 , , p m , μ 1 , , μ m are positive real numbers and n , k 1 , , k m are positive integers. We show that if a Hankel operator with anti-holomorphic symbol is Hilbert-Schmidt on the Bergman space A 2 ( D n , m , k μ , p , s ) , then it must be zero. This gives an example of high dimensional unbounded complete Reinhardt domain that does not admit nonzero Hilbert-Schmidt Hankel operators with anti-holomorphic symbols.

On the powers of quasihomogeneous Toeplitz operators

Aissa Bouhali, Zohra Bendaoud, Issam Louhichi (2021)

Czechoslovak Mathematical Journal

Similarity:

We present sufficient conditions for the existence of p th powers of a quasihomogeneous Toeplitz operator T e i s θ ψ , where ψ is a radial polynomial function and p , s are natural numbers. A large class of examples is provided to illustrate our results. To our best knowledge those examples are not covered by the current literature. The main tools in the proof of our results are the Mellin transform and some classical theorems of complex analysis.