Displaying similar documents to “Reducing the number of periodic points in the smooth homotopy class of a self-map of a simply-connected manifold with periodic sequence of Lefschetz numbers”

Minimal number of periodic points for smooth self-maps of S³

Grzegorz Graff, Jerzy Jezierski (2009)

Fundamenta Mathematicae

Similarity:

Let f be a continuous self-map of a smooth compact connected and simply-connected manifold of dimension m ≥ 3 and r a fixed natural number. A topological invariant D r m [ f ] , introduced by the authors [Forum Math. 21 (2009)], is equal to the minimal number of r-periodic points for all smooth maps homotopic to f. In this paper we calculate D ³ r [ f ] for all self-maps of S³.

Weak Wecken's theorem for periodic points in dimension 3

Jerzy Jezierski (2003)

Fundamenta Mathematicae

Similarity:

We prove that a self-map f: M → M of a compact PL-manifold of dimension ≥ 3 is homotopic to a map with no periodic points of period n iff the Nielsen numbers N ( f k ) for k dividing n all vanish. This generalizes the result from [Je] to dimension 3.

Periodic Solutions of Periodic Retarded Functional Differential Equations

Marcin Pawłowski (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

The paper presents a geometric method of finding periodic solutions of retarded functional differential equations (RFDE) x ' ( t ) = f ( t , x t ) , where f is T-periodic in t. We construct a pair of subsets of ℝ × ℝⁿ called a T-periodic block and compute its Lefschetz number. If it is nonzero, then there exists a T-periodic solution.

Minimization of the number of periodic points for smooth self-maps of simply-connected manifolds with periodic sequence of Lefschetz numbers

Grzegorz Graff, Agnieszka Kaczkowska (2012)

Open Mathematics

Similarity:

Let f be a smooth self-map of m-dimensional, m ≥ 4, smooth closed connected and simply-connected manifold, r a fixed natural number. For the class of maps with periodic sequence of Lefschetz numbers of iterations the authors introduced in [Graff G., Kaczkowska A., Reducing the number of periodic points in smooth homotopy class of self-maps of simply-connected manifolds with periodic sequence of Lefschetz numbers, Ann. Polon. Math. (in press)] the topological invariant J[f] which is equal...

Periodic solutions to a non-linear differential equation of the order 2 n + 1

Monika Kubicova (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

A criterion for the existance of periodic solutions of an ordinary differential equation of order k proved by J. Andres and J. Vorâcek for k = 3 is extended to an arbitrary odd k.

Existence and uniqueness of positive periodic solutions for a class of integral equations with parameters

Shu-Gui Kang, Bao Shi, Sui Sun Cheng (2009)

Annales Polonici Mathematici

Similarity:

Existence of periodic solutions of functional differential equations with parameters such as Nicholson’s blowflies model call for the investigation of integral equations with parameters defined over spaces with periodic structures. In this paper, we study one such equation ϕ ( x ) = λ [ x , x + ω ] Ω K ( x , y ) h ( y ) f ( y , ϕ ( y - τ ( y ) ) ) d y , x ∈ Ω, by means of the proper value theory of operators in Banach spaces with cones. Existence, uniqueness and continuous dependence of proper solutions are established.

Periodic solutions of evolution problem associated with moving convex sets

Charles Castaing, Manuel D.P. Monteiro Marques (1995)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

This paper is concerned with periodic solutions for perturbations of the sweeping process introduced by J.J. Moreau in 1971. The perturbed equation has the form - D u N C ( t ) ( u ( t ) ) + f ( t , u ( t ) ) where C is a T-periodic multifunction from [0,T] into the set of nonempty convex weakly compact subsets of a separable Hilbert space H, N C ( t ) ( u ( t ) ) is the normal cone of C(t) at u(t), f:[0,T] × H∪H is a Carathéodory function and Du is the differential measure of the periodic BV solution u. Several existence results of periodic solutions...

Periodic segments and Nielsen numbers

Klaudiusz Wójcik (1999)

Banach Center Publications

Similarity:

We prove that the Poincaré map φ ( 0 , T ) has at least N ( h ˜ , c l ( W 0 W 0 - ) ) fixed points (whose trajectories are contained inside the segment W) where the homeomorphism h ˜ is given by the segment W.

On maximizing measures of homeomorphisms on compact manifolds

Fábio Armando Tal, Salvador Addas-Zanata (2008)

Fundamenta Mathematicae

Similarity:

We prove that given a compact n-dimensional connected Riemannian manifold X and a continuous function g: X → ℝ, there exists a dense subset of the space of homeomorphisms of X such that for all T in this subset, the integral X g d μ , considered as a function on the space of all T-invariant Borel probability measures μ, attains its maximum on a measure supported on a periodic orbit.

On the solution set of the nonconvex sweeping process

Andrea Gavioli (1999)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

We prove that the solutions of a sweeping process make up an R δ -set under the following assumptions: the moving set C(t) has a lipschitzian retraction and, in the neighbourhood of each point x of its boundary, it can be seen as the epigraph of a lipschitzian function, in such a way that the diameter of the neighbourhood and the related Lipschitz constant do not depend on x and t. An application to the existence of periodic solutions is given.

Stable periodic solutions in scalar periodic differential delay equations

Anatoli Ivanov, Sergiy Shelyag (2023)

Archivum Mathematicum

Similarity:

A class of nonlinear simple form differential delay equations with a T -periodic coefficient and a constant delay τ > 0 is considered. It is shown that for an arbitrary value of the period T > 4 τ - d 0 , for some d 0 > 0 , there is an equation in the class such that it possesses an asymptotically stable T -period solution. The periodic solutions are constructed explicitly for the piecewise constant nonlinearities and the periodic coefficients involved, by reduction of the problem to one-dimensional maps. The...

Generalized c -almost periodic type functions in n

M. Kostić (2021)

Archivum Mathematicum

Similarity:

In this paper, we analyze multi-dimensional quasi-asymptotically c -almost periodic functions and their Stepanov generalizations as well as multi-dimensional Weyl c -almost periodic type functions. We also analyze several important subclasses of the class of multi-dimensional quasi-asymptotically c -almost periodic functions and reconsider the notion of semi- c -periodicity in the multi-dimensional setting, working in the general framework of Lebesgue spaces with variable exponent. We provide...

Periodic solutions for first order neutral functional differential equations with multiple deviating arguments

Lequn Peng, Lijuan Wang (2014)

Annales Polonici Mathematici

Similarity:

We consider first order neutral functional differential equations with multiple deviating arguments of the form ( x ( t ) + B x ( t - δ ) ) ' = g ( t , x ( t ) ) + k = 1 n g k ( t , x ( t - τ k ( t ) ) ) + p ( t ) . By using coincidence degree theory, we establish some sufficient conditions on the existence and uniqueness of periodic solutions for the above equation. Moreover, two examples are given to illustrate the effectiveness of our results.

Positive periodic solutions of functional differential equations with infinite delay

Changxiu Song (2008)

Annales Polonici Mathematici

Similarity:

The author applies a generalized Leggett-Williams fixed point theorem to the study of the nonlinear functional differential equation x ' ( t ) = - a ( t , x ( t ) ) x ( t ) + f ( t , x t ) . Sufficient conditions are established for the existence of multiple positive periodic solutions.

Periodic solutions to Lagrangian system

Oleg Zubelevich (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A classical mechanics Lagrangian system with even Lagrangian is considered. The configuration space is a cylinder m × 𝕋 n . A large class of nonhomotopic periodic solutions has been found.

Periodic solutions of the Rayleigh equation with damping of definite sign

Pierpaolo Omari, Gabriele Villari (1990)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

The existence of a non-trivial periodic solution for the autonomous Rayleigh equation x ¨ + F x ˙ + g x = 0 is proved, assuming conditions which do not imply that F x x has a definite sign for x large. A similar result is obtained for the periodically forced equation x ¨ + F x ˙ + g x = e t .

Periodic solutions to evolution equations: existence, conditional stability and admissibility of function spaces

Nguyen Thieu Huy, Ngo Quy Dang (2016)

Annales Polonici Mathematici

Similarity:

We prove the existence and conditional stability of periodic solutions to semilinear evolution equations of the form u̇ = A(t)u + g(t,u(t)), where the operator-valued function t ↦ A(t) is 1-periodic, and the operator g(t,x) is 1-periodic with respect to t for each fixed x and satisfies the φ-Lipschitz condition ||g(t,x₁) - g(t,x₂)|| ≤ φ(t)||x₁-x₂|| for φ(t) being a real and positive function which belongs to an admissible function space. We then apply the results to study the existence,...

New results on stability of periodic solution for CNNs with proportional delays and D operator

Bo Du (2019)

Kybernetika

Similarity:

The problems related to periodic solutions of cellular neural networks (CNNs) involving D operator and proportional delays are considered. We shall present Topology degree theory and differential inequality technique for obtaining the existence of periodic solution to the considered neural networks. Furthermore, Laypunov functional method is used for studying global asymptotic stability of periodic solutions to the above system.