Displaying similar documents to “Generalized Choquet spaces”

On β-favorability of the strong Choquet game

László Zsilinszky (2011)

Colloquium Mathematicae

Similarity:

In the main result, partially answering a question of Telgársky, the following is proven: if X is a first countable R₀-space, then player β (i.e. the EMPTY player) has a winning strategy in the strong Choquet game on X if and only if X contains a nonempty W δ -subspace which is of the first category in itself.

Equilibrium analysis of distributed aggregative game with misinformation

Meng Yuan, Zhaoyang Cheng, Te Ma (2024)

Kybernetika

Similarity:

This paper considers a distributed aggregative game problem for a group of players with misinformation, where each player has a different perception of the game. Player’s deception behavior is inevitable in this situation for reducing its own cost. We utilize hypergame to model the above problems and adopt ϵ -Nash equilibrium for hypergame to investigate whether players believe in their own cognition. Additionally, we propose a distributed deceptive algorithm for a player implementing...

Applications of limited information strategies in Menger's game

Steven Clontz (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

As shown by Telgársky and Scheepers, winning strategies in the Menger game characterize σ -compactness amongst metrizable spaces. This is improved by showing that winning Markov strategies in the Menger game characterize σ -compactness amongst regular spaces, and that winning strategies may be improved to winning Markov strategies in second-countable spaces. An investigation of 2-Markov strategies introduces a new topological property between σ -compact and Menger spaces.

Linear complementarity problems and bi-linear games

Gokulraj Sengodan, Chandrashekaran Arumugasamy (2020)

Applications of Mathematics

Similarity:

In this paper, we define bi-linear games as a generalization of the bimatrix games. In particular, we generalize concepts like the value and equilibrium of a bimatrix game to the general linear transformations defined on a finite dimensional space. For a special type of 𝐙 -transformation we observe relationship between the values of the linear and bi-linear games. Using this relationship, we prove some known classical results in the theory of linear complementarity problems for this type...

Bayesian Nash equilibrium seeking for multi-agent incomplete-information aggregative games

Hanzheng Zhang, Huashu Qin, Guanpu Chen (2023)

Kybernetika

Similarity:

In this paper, we consider a distributed Bayesian Nash equilibrium (BNE) seeking problem in incomplete-information aggregative games, which is a generalization of either Bayesian games or deterministic aggregative games. We handle the aggregation function to adapt to incomplete-information situations. Since the feasible strategies are infinite-dimensional functions and lie in a non-compact set, the continuity of types brings barriers to seeking equilibria. To this end, we discretize...

Infinite games and chain conditions

Santi Spadaro (2016)

Fundamenta Mathematicae

Similarity:

We apply the theory of infinite two-person games to two well-known problems in topology: Suslin’s Problem and Arhangel’skii’s problem on the weak Lindelöf number of the G δ topology on a compact space. More specifically, we prove results of which the following two are special cases: 1) every linearly ordered topological space satisfying the game-theoretic version of the countable chain condition is separable, and 2) in every compact space satisfying the game-theoretic version of the weak...

Topological games and product spaces

Salvador García-Ferreira, R. A. González-Silva, Artur Hideyuki Tomita (2002)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper, we deal with the product of spaces which are either 𝒢 -spaces or 𝒢 p -spaces, for some p ω * . These spaces are defined in terms of a two-person infinite game over a topological space. All countably compact spaces are 𝒢 -spaces, and every 𝒢 p -space is a 𝒢 -space, for every p ω * . We prove that if { X μ : μ < ω 1 } is a set of spaces whose product X = μ < ω 1 X μ is a 𝒢 -space, then there is A [ ω 1 ] ω such that X μ is countably compact for every μ ω 1 A . As a consequence, X ω 1 is a 𝒢 -space iff X ω 1 is countably compact, and if X 2 𝔠 is a 𝒢 -space,...

Uncountable γ-sets under axiom C P A c u b e g a m e

Krzysztof Ciesielski, Andrés Millán, Janusz Pawlikowski (2003)

Fundamenta Mathematicae

Similarity:

We formulate a Covering Property Axiom C P A c u b e g a m e , which holds in the iterated perfect set model, and show that it implies the existence of uncountable strong γ-sets in ℝ (which are strongly meager) as well as uncountable γ-sets in ℝ which are not strongly meager. These sets must be of cardinality ω₁ < , since every γ-set is universally null, while C P A c u b e g a m e implies that every universally null has cardinality less than = ω₂. We also show that C P A c u b e g a m e implies the existence of a partition of ℝ into ω₁ null...

Existence of the value of fixed duration dynamical games

Piotr Borówko, Witold Rzymowski

Similarity:

CONTENTS1. Introduction.......................................................................................................52. Game................................................................................................................63. Approximation condition....................................................................................84. Differential games of Friedman’s type.............................................................13  4.1. Game without delay....................................................................................13  4.2....

Determinacy of adversarial Gowers games

Christian Rosendal (2014)

Fundamenta Mathematicae

Similarity:

We prove a game-theoretic dichotomy for G δ σ sets of block sequences in vector spaces that extends, on the one hand, the block Ramsey theorem of W. T. Gowers proved for analytic sets of block sequences and, on the other hand, M. Davis’ proof of Σ⁰₃ determinacy.

Some new versions of an old game

Vladimir Vladimirovich Tkachuk (1995)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The old game is the point-open one discovered independently by F. Galvin [7] and R. Telgársky [17]. Recall that it is played on a topological space X as follows: at the n -th move the first player picks a point x n X and the second responds with choosing an open U n x n . The game stops after ω moves and the first player wins if { U n : n ω } = X . Otherwise the victory is ascribed to the second player. In this paper we introduce and study the games θ and Ω . In θ the moves are made exactly as in the point-open game,...

Applications of saddle-point determinants

Jan Hauke, Charles R. Johnson, Tadeusz Ostrowski (2015)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

For a given square matrix A M n ( ) and the vector e ( ) n of ones denote by (A,e) the matrix ⎡ A e ⎤ ⎣ e T 0 ⎦ This is often called the saddle point matrix and it plays a significant role in several branches of mathematics. Here we show some applications of it in: game theory and analysis. An application of specific saddle point matrices that are hollow, symmetric, and nonnegative is likewise shown in geometry as a generalization of Heron’s formula to give the volume of a general simplex, as well as...

Lindelöf indestructibility, topological games and selection principles

Marion Scheepers, Franklin D. Tall (2010)

Fundamenta Mathematicae

Similarity:

Arhangel’skii proved that if a first countable Hausdorff space is Lindelöf, then its cardinality is at most 2 . Such a clean upper bound for Lindelöf spaces in the larger class of spaces whose points are G δ has been more elusive. In this paper we continue the agenda started by the second author, [Topology Appl. 63 (1995)], of considering the cardinality problem for spaces satisfying stronger versions of the Lindelöf property. Infinite games and selection principles, especially the Rothberger...

On the Variational Inequality and Tykhonov Well-Posedness in Game Theory

C. A. Pensavalle, G. Pieri (2010)

Bollettino dell'Unione Matematica Italiana

Similarity:

Consider a M-player game in strategic form G = ( X 1 , , X M , g 1 , , g M ) where the set X i is a closed interval of real numbers and the payoff function g i is concave and differentiable with respect to the variable x i X i , for any i = 1 , , M . The aim of this paper is to find appropriate conditions on the payoff functions under the well-posedness with respect to the related variational inequality is equivalent to the formulation of the Tykhonov well-posedness in a game context. The idea of the proof is to appeal to a third equivalence,...