Displaying similar documents to “On Sequential Heuristic Methods for the Maximum Independent Set Problem”

Solving the Minimum Independent Domination Set Problem in Graphs by Exact Algorithm and Greedy Heuristic

Christian Laforest, Raksmey Phan (2013)

RAIRO - Operations Research - Recherche Opérationnelle

Similarity:

In this paper we present a new approach to solve the Minimum Independent Dominating Set problem in general graphs which is one of the hardest optimization problem. We propose a method using a clique partition of the graph, partition that can be obtained greedily. We provide conditions under which our method has a better complexity than the complexity of the previously known algorithms. Based on our theoretical method, we design in the second part of this paper an efficient algorithm...

Heuristic and metaheuristic methods for computing graph treewidth

François Clautiaux, Aziz Moukrim, Stéphane Nègre, Jacques Carlier (2004)

RAIRO - Operations Research - Recherche Opérationnelle

Similarity:

The notion of treewidth is of considerable interest in relation to NP-hard problems. Indeed, several studies have shown that the tree-decomposition method can be used to solve many basic optimization problems in polynomial time when treewidth is bounded, even if, for arbitrary graphs, computing the treewidth is NP-hard. Several papers present heuristics with computational experiments. For many graphs the discrepancy between the heuristic results and the best lower bounds is still very...

A Metaheuristic Approach to Solving the Generalized Vertex Cover Problem

Milanović, Marija (2010)

Mathematica Balkanica New Series

Similarity:

AMS Subj. Classification: 90C27, 05C85, 90C59 The topic is related to solving the generalized vertex cover problem (GVCP) by genetic algorithm. The problem is NP-hard as a generalization of well-known vertex cover problem which was one of the first problems shown to be NP-hard. The definition of the GVCP and basics of genetic algorithms are described. Details of genetic algorithm and numerical results are presented in [8]. Genetic algorithm obtained high quality solutions in...

Solving Maximum Clique Problem for Protein Structure Similarity

Malod-Dognin, Noël, Andonov, Rumen, Yanev, Nicola (2010)

Serdica Journal of Computing

Similarity:

Computing the similarity between two protein structures is a crucial task in molecular biology, and has been extensively investigated. Many protein structure comparison methods can be modeled as maximum weighted clique problems in specific k-partite graphs, referred here as alignment graphs. In this paper we present both a new integer programming formulation for solving such clique problems and a dedicated branch and bound algorithm for solving the maximum cardinality clique problem....

Algorithmic aspects of total-subdomination in graphs

Laura M. Harris, Johannes H. Hattingh, Michael A. Henning (2006)

Discussiones Mathematicae Graph Theory

Similarity:

Let G = (V,E) be a graph and let k ∈ Z⁺. A total k-subdominating function is a function f: V → {-1,1} such that for at least k vertices v of G, the sum of the function values of f in the open neighborhood of v is positive. The total k-subdomination number of G is the minimum value of f(V) over all total k-subdominating functions f of G where f(V) denotes the sum of the function values assigned to the vertices under f. In this paper, we present a cubic time algorithm to compute the total...

Finding dominators in practice.

Georgiadis, Loukas, Tarjan, Robert E., Werneck, Renato F. (2006)

Journal of Graph Algorithms and Applications

Similarity: