The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Solvability classes for core problems in matrix total least squares minimization”

Equivalence classes of Latin squares and nets in P 2

Corey Dunn, Matthew Miller, Max Wakefield, Sebastian Zwicknagl (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

The fundamental combinatorial structure of a net in P 2 is its associated set of mutually orthogonal Latin squares. We define equivalence classes of sets of orthogonal Latin squares by label equivalences of the lines of the corresponding net in P 2 . Then we count these equivalence classes for small cases. Finally we prove that the realization spaces of these classes in P 2 are empty to show some non-existence results for 4-nets in P 2 .

Exceptional sets in Waring's problem: two squares and s biquadrates

Lilu Zhao (2014)

Acta Arithmetica

Similarity:

Let R s ( n ) denote the number of representations of the positive number n as the sum of two squares and s biquadrates. When s = 3 or 4, it is established that the anticipated asymptotic formula for R s ( n ) holds for all n X with at most O ( X ( 9 - 2 s ) / 8 + ε ) exceptions.

Filter factors of truncated TLS regularization with multiple observations

Iveta Hnětynková, Martin Plešinger, Jana Žáková (2017)

Applications of Mathematics

Similarity:

The total least squares (TLS) and truncated TLS (T-TLS) methods are widely known linear data fitting approaches, often used also in the context of very ill-conditioned, rank-deficient, or ill-posed problems. Regularization properties of T-TLS applied to linear approximation problems A x b were analyzed by Fierro, Golub, Hansen, and O’Leary (1997) through the so-called filter factors allowing to represent the solution in terms of a filtered pseudoinverse of A applied to b . This paper focuses...

Factorization of CP-rank- 3 completely positive matrices

Jan Brandts, Michal Křížek (2016)

Czechoslovak Mathematical Journal

Similarity:

A symmetric positive semi-definite matrix A is called completely positive if there exists a matrix B with nonnegative entries such that A = B B . If B is such a matrix with a minimal number p of columns, then p is called the cp-rank of A . In this paper we develop a finite and exact algorithm to factorize any matrix A of cp-rank 3 . Failure of this algorithm implies that A does not have cp-rank 3 . Our motivation stems from the question if there exist three nonnegative polynomials of degree at...

A hybrid method for nonlinear least squares that uses quasi-Newton updates applied to an approximation of the Jacobian matrix

Lukšan, Ladislav, Vlček, Jan

Similarity:

In this contribution, we propose a new hybrid method for minimization of nonlinear least squares. This method is based on quasi-Newton updates, applied to an approximation A of the Jacobian matrix J , such that A T f = J T f . This property allows us to solve a linear least squares problem, minimizing A d + f instead of solving the normal equation A T A d + J T f = 0 , where d R n is the required direction vector. Computational experiments confirm the efficiency of the new method.

Possible isolation number of a matrix over nonnegative integers

LeRoy B. Beasley, Young Bae Jun, Seok-Zun Song (2018)

Czechoslovak Mathematical Journal

Similarity:

Let + be the semiring of all nonnegative integers and A an m × n matrix over + . The rank of A is the smallest k such that A can be factored as an m × k matrix times a k × n matrix. The isolation number of A is the maximum number of nonzero entries in A such that no two are in any row or any column, and no two are in a 2 × 2 submatrix of all nonzero entries. We have that the isolation number of A is a lower bound of the rank of A . For A with isolation number k , we investigate the possible values of the...

Sum of squares and the Łojasiewicz exponent at infinity

Krzysztof Kurdyka, Beata Osińska-Ulrych, Grzegorz Skalski, Stanisław Spodzieja (2014)

Annales Polonici Mathematici

Similarity:

Let V ⊂ ℝⁿ, n ≥ 2, be an unbounded algebraic set defined by a system of polynomial equations h ( x ) = = h r ( x ) = 0 and let f: ℝⁿ→ ℝ be a polynomial. It is known that if f is positive on V then f | V extends to a positive polynomial on the ambient space ℝⁿ, provided V is a variety. We give a constructive proof of this fact for an arbitrary algebraic set V. Precisely, if f is positive on V then there exists a polynomial h ( x ) = i = 1 r h ² i ( x ) σ i ( x ) , where σ i are sums of squares of polynomials of degree at most p, such that f(x) + h(x) >...

On the real X -ranks of points of n ( ) with respect to a real variety X n

Edoardo Ballico (2010)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let  X n be an integral and non-degenerate m -dimensional variety defined over . For any P n ( ) the real X -rank r X , ( P ) is the minimal cardinality of S X ( ) such that P S . Here we extend to the real case an upper bound for the X -rank due to Landsberg and Teitler.

Some duality results on bounded approximation properties of pairs

Eve Oja, Silja Treialt (2013)

Studia Mathematica

Similarity:

The main result is as follows. Let X be a Banach space and let Y be a closed subspace of X. Assume that the pair ( X * , Y ) has the λ-bounded approximation property. Then there exists a net ( S α ) of finite-rank operators on X such that S α ( Y ) Y and | | S α | | λ for all α, and ( S α ) and ( S * α ) converge pointwise to the identity operators on X and X*, respectively. This means that the pair (X,Y) has the λ-bounded duality approximation property.

Cardinalities of DCCC normal spaces with a rank 2-diagonal

Wei-Feng Xuan, Wei-Xue Shi (2016)

Mathematica Bohemica

Similarity:

A topological space X has a rank 2-diagonal if there exists a diagonal sequence on X of rank 2 , that is, there is a countable family { 𝒰 n : n ω } of open covers of X such that for each x X , { x } = { St 2 ( x , 𝒰 n ) : n ω } . We say that a space X satisfies the Discrete Countable Chain Condition (DCCC for short) if every discrete family of nonempty open subsets of X is countable. We mainly prove that if X is a DCCC normal space with a rank 2-diagonal, then the cardinality of X is at most 𝔠 . Moreover, we prove that if X is a first...

Ground states of supersymmetric matrix models

Gian Michele Graf (1998-1999)

Séminaire Équations aux dérivées partielles

Similarity:

We consider supersymmetric matrix Hamiltonians. The existence of a zero-energy bound state, in particular for the d = 9 model, is of interest in M-theory. While we do not quite prove its existence, we show that the decay at infinity such a state would have is compatible with normalizability (and hence existence) in d = 9 . Moreover, it would be unique. Other values of d , where the situation is somewhat different, shall also be addressed. The analysis is based on a Born-Oppenheimer approximation....

On the approximation of real continuous functions by series of solutions of a single system of partial differential equations

Carsten Elsner (2006)

Colloquium Mathematicae

Similarity:

We prove the existence of an effectively computable integer polynomial P(x,t₀,...,t₅) having the following property. Every continuous function f : s can be approximated with arbitrary accuracy by an infinite sum r = 1 H r ( x , . . . , x s ) C ( s ) of analytic functions H r , each solving the same system of universal partial differential equations, namely P ( x σ ; H r , H r / x σ , . . . , H r / x σ ) = 0 (σ = 1,..., s).

On soluble groups of module automorphisms of finite rank

Bertram A. F. Wehrfritz (2017)

Czechoslovak Mathematical Journal

Similarity:

Let R be a commutative ring, M an R -module and G a group of R -automorphisms of M , usually with some sort of rank restriction on G . We study the transfer of hypotheses between M / C M ( G ) and [ M , G ] such as Noetherian or having finite composition length. In this we extend recent work of Dixon, Kurdachenko and Otal and of Kurdachenko, Subbotin and Chupordia. For example, suppose [ M , G ] is R -Noetherian. If G has finite rank, then M / C M ( G ) also is R -Noetherian. Further, if [ M , G ] is R -Noetherian and if only certain abelian...

On the multiples of a badly approximable vector

Yann Bugeaud (2015)

Acta Arithmetica

Similarity:

Let d be a positive integer and α a real algebraic number of degree d + 1. Set α ̲ : = ( α , α ² , . . . , α d ) . It is well-known that c ( α ̲ ) : = l i m i n f q q 1 / d · | | q α ̲ | | > 0 , where ||·|| denotes the distance to the nearest integer. Furthermore, c ( α ̲ ) n - 1 / d c ( n α ̲ ) n c ( α ̲ ) for any integer n ≥ 1. Our main result asserts that there exists a real number C, depending only on α, such that c ( n α ̲ ) C n - 1 / d for any integer n ≥ 1.

Row Hadamard majorization on 𝐌 m , n

Abbas Askarizadeh, Ali Armandnejad (2021)

Czechoslovak Mathematical Journal

Similarity:

An m × n matrix R with nonnegative entries is called row stochastic if the sum of entries on every row of R is 1. Let 𝐌 m , n be the set of all m × n real matrices. For A , B 𝐌 m , n , we say that A is row Hadamard majorized by B (denoted by A R H B ) if there exists an m × n row stochastic matrix R such that A = R B , where X Y is the Hadamard product (entrywise product) of matrices X , Y 𝐌 m , n . In this paper, we consider the concept of row Hadamard majorization as a relation on 𝐌 m , n and characterize the structure of all linear operators T : 𝐌 m , n 𝐌 m , n preserving...