Displaying similar documents to “Two remarks on Lie rings of 2 × 2 matrices over commutative associative rings”

On matrix Lie rings over a commutative ring that contain the special linear Lie ring

Evgenii L. Bashkirov, Esra Pekönür (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let K be an associative and commutative ring with 1 , k a subring of K such that 1 k , n 2 an integer. The paper describes subrings of the general linear Lie ring g l n ( K ) that contain the Lie ring of all traceless matrices over k .

Centralizing traces and Lie-type isomorphisms on generalized matrix algebras: a new perspective

Xinfeng Liang, Feng Wei, Ajda Fošner (2019)

Czechoslovak Mathematical Journal

Similarity:

Let be a commutative ring, 𝒢 be a generalized matrix algebra over with weakly loyal bimodule and 𝒵 ( 𝒢 ) be the center of 𝒢 . Suppose that 𝔮 : 𝒢 × 𝒢 𝒢 is an -bilinear mapping and that 𝔗 𝔮 : 𝒢 𝒢 is a trace of 𝔮 . The aim of this article is to describe the form of 𝔗 𝔮 satisfying the centralizing condition [ 𝔗 𝔮 ( x ) , x ] 𝒵 ( 𝒢 ) (and commuting condition [ 𝔗 𝔮 ( x ) , x ] = 0 ) for all x 𝒢 . More precisely, we will revisit the question of when the centralizing trace (and commuting trace) 𝔗 𝔮 has the so-called proper form from a new perspective. Using the aforementioned...

Semicommutativity of the rings relative to prime radical

Handan Kose, Burcu Ungor (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper, we introduce a new kind of rings that behave like semicommutative rings, but satisfy yet more known results. This kind of rings is called P -semicommutative. We prove that a ring R is P -semicommutative if and only if R [ x ] is P -semicommutative if and only if R [ x , x - 1 ] is P -semicommutative. Also, if R [ [ x ] ] is P -semicommutative, then R is P -semicommutative. The converse holds provided that P ( R ) is nilpotent and R is power serieswise Armendariz. For each positive integer n , R is P -semicommutative...

(Generalized) filter properties of the amalgamated algebra

Yusof Azimi (2022)

Archivum Mathematicum

Similarity:

Let R and S be commutative rings with unity, f : R S a ring homomorphism and J an ideal of S . Then the subring R f J : = { ( a , f ( a ) + j ) a R and j J } of R × S is called the amalgamation of R with S along J with respect to f . In this paper, we determine when R f J is a (generalized) filter ring.

P-injective group rings

Liang Shen (2020)

Czechoslovak Mathematical Journal

Similarity:

A ring R is called right P-injective if every homomorphism from a principal right ideal of R to R R can be extended to a homomorphism from R R to R R . Let R be a ring and G a group. Based on a result of Nicholson and Yousif, we prove that the group ring RG is right P-injective if and only if (a) R is right P-injective; (b) G is locally finite; and (c) for any finite subgroup H of G and any principal right ideal I of RH , if f Hom R ( I R , R R ) , then there exists g Hom R ( RH R , R R ) such that g | I = f . Similarly, we also obtain equivalent...

Annihilating and power-commuting generalized skew derivations on Lie ideals in prime rings

Vincenzo de Filippis (2016)

Czechoslovak Mathematical Journal

Similarity:

Let R be a prime ring of characteristic different from 2 and 3, Q r its right Martindale quotient ring, C its extended centroid, L a non-central Lie ideal of R and n 1 a fixed positive integer. Let α be an automorphism of the ring R . An additive map D : R R is called an α -derivation (or a skew derivation) on R if D ( x y ) = D ( x ) y + α ( x ) D ( y ) for all x , y R . An additive mapping F : R R is called a generalized α -derivation (or a generalized skew derivation) on R if there exists a skew derivation D on R such that F ( x y ) = F ( x ) y + α ( x ) D ( y ) for all x , y R . We prove...

Strongly 2-nil-clean rings with involutions

Huanyin Chen, Marjan Sheibani Abdolyousefi (2019)

Czechoslovak Mathematical Journal

Similarity:

A * -ring R is strongly 2-nil- * -clean if every element in R is the sum of two projections and a nilpotent that commute. Fundamental properties of such * -rings are obtained. We prove that a * -ring R is strongly 2-nil- * -clean if and only if for all a R , a 2 R is strongly nil- * -clean, if and only if for any a R there exists a * -tripotent e R such that a - e R is nilpotent and e a = a e , if and only if R is a strongly * -clean SN ring, if and only if R is abelian, J ( R ) is nil and R / J ( R ) is * -tripotent. Furthermore, we explore...

A subclass of strongly clean rings

Orhan Gurgun, Sait Halicioglu and Burcu Ungor (2015)

Communications in Mathematics

Similarity:

In this paper, we introduce a subclass of strongly clean rings. Let R be a ring with identity, J be the Jacobson radical of R , and let J # denote the set of all elements of R which are nilpotent in R / J . An element a R is called provided that there exists an idempotent e R such that a e = e a and a - e or a + e is an element of J # . A ring R is said to be in case every element in R is very J # -clean. We prove that every very J # -clean ring is strongly π -rad clean and has stable range one. It is shown that for a...