Displaying similar documents to “Existence of entropy solutions to nonlinear degenerate parabolic problems with variable exponent and L 1 -data”

Existence results for a class of nonlinear parabolic equations with two lower order terms

Ahmed Aberqi, Jaouad Bennouna, M. Hammoumi, Mounir Mekkour, Ahmed Youssfi (2014)

Applicationes Mathematicae

Similarity:

We investigate the existence of renormalized solutions for some nonlinear parabolic problems associated to equations of the form ⎧ ( e β u - 1 ) / t - d i v ( | u | p - 2 u ) + d i v ( c ( x , t ) | u | s - 1 u ) + b ( x , t ) | u | r = f in Q = Ω×(0,T), ⎨ u(x,t) = 0 on ∂Ω ×(0,T), ⎩ ( e β u - 1 ) ( x , 0 ) = ( e β u - 1 ) ( x ) in Ω. with s = (N+2)/(N+p) (p-1), c ( x , t ) ( L τ ( Q T ) ) N , τ = (N+p)/(p-1), r = (N(p-1) + p)/(N+2), b ( x , t ) L N + 2 , 1 ( Q T ) and f ∈ L¹(Q).

On the joint entropy of d -wise-independent variables

Dmitry Gavinsky, Pavel Pudlák (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

How low can the joint entropy of n d -wise independent (for d 2 ) discrete random variables be, subject to given constraints on the individual distributions (say, no value may be taken by a variable with probability greater than p , for p < 1 )? This question has been posed and partially answered in a recent work of Babai [Entropy versus pairwise independence (preliminary version), http://people.cs.uchicago.edu/ laci/papers/13augEntropy.pdf, 2013]. In this paper we improve some...

ε-Entropy and moduli of smoothness in L p -spaces

A. Kamont (1992)

Studia Mathematica

Similarity:

The asymptotic behaviour of ε-entropy of classes of Lipschitz functions in L p ( d ) is obtained. Moreover, the asymptotics of ε-entropy of classes of Lipschitz functions in L p ( d ) whose tail function decreases as O ( λ - γ ) is obtained. In case p = 1 the relation between the ε-entropy of a given class of probability densities on d and the minimax risk for that class is discussed.

On some nonlinear nonhomogeneous elliptic unilateral problems involving noncontrollable lower order terms with measure right hand side

C. Yazough, E. Azroul, H. Redwane (2013)

Applicationes Mathematicae

Similarity:

We prove the existence of entropy solutions to unilateral problems associated to equations of the type A u - d i v ( ϕ ( u ) ) = μ L ¹ ( Ω ) + W - 1 , p ' ( · ) ( Ω ) , where A is a Leray-Lions operator acting from W 1 , p ( · ) ( Ω ) into its dual W - 1 , p ( · ) ( Ω ) and ϕ C ( , N ) .

Jumps of entropy for C r interval maps

David Burguet (2015)

Fundamenta Mathematicae

Similarity:

We study the jumps of topological entropy for C r interval or circle maps. We prove in particular that the topological entropy is continuous at any f C r ( [ 0 , 1 ] ) with h t o p ( f ) > ( l o g | | f ' | | ) / r . To this end we study the continuity of the entropy of the Buzzi-Hofbauer diagrams associated to C r interval maps.

Blowup rates for nonlinear heat equations with gradient terms and for parabolic inequalities

Philippe Souplet, Slim Tayachi (2001)

Colloquium Mathematicae

Similarity:

Consider the nonlinear heat equation (E): u t - Δ u = | u | p - 1 u + b | u | q . We prove that for a large class of radial, positive, nonglobal solutions of (E), one has the blowup estimates C ( T - t ) - 1 / ( p - 1 ) | | u ( t ) | | C ( T - t ) - 1 / ( p - 1 ) . Also, as an application of our method, we obtain the same upper estimate if u only satisfies the nonlinear parabolic inequality u t - u x x u p . More general inequalities of the form u t - u x x f ( u ) with, for instance, f ( u ) = ( 1 + u ) l o g p ( 1 + u ) are also treated. Our results show that for solutions of the parabolic inequality, one has essentially the same estimates as for solutions...

Entropy and approximation numbers of embeddings between weighted Besov spaces

Iwona Piotrowska (2008)

Banach Center Publications

Similarity:

The present paper is devoted to the study of the “quality” of the compactness of the trace operator. More precisely, we characterize the asymptotic behaviour of entropy numbers of the compact map t r Γ : B p , q s ( , w ϰ Γ ) L p ( Γ ) , where Γ is a d-set with 0 < d < n and w ϰ Γ a weight of type w ϰ Γ ( x ) d i s t ( x , Γ ) ϰ near Γ with ϰ > -(n-d). There are parallel results for approximation numbers.

Topological disjointness from entropy zero systems

Wen Huang, Kyewon Koh Park, Xiangdong Ye (2007)

Bulletin de la Société Mathématique de France

Similarity:

The properties of topological dynamical systems ( X , T ) which are disjoint from all minimal systems of zero entropy, 0 , are investigated. Unlike the measurable case, it is known that topological K -systems make up a proper subset of the systems which are disjoint from 0 . We show that ( X , T ) has an invariant measure with full support, and if in addition ( X , T ) is transitive, then ( X , T ) is weakly mixing. A transitive diagonal system with only one minimal point is constructed. As a consequence, there exists...

The Cauchy problem for a strongly degenerate quasilinear equation

F. Andreu, Vicent Caselles, J. M. Mazón (2005)

Journal of the European Mathematical Society

Similarity:

We prove existence and uniqueness of entropy solutions for the Cauchy problem for the quasilinear parabolic equation u t = div 𝐚 ( u , D u ) , where 𝐚 ( z , ξ ) = ξ f ( z , ξ ) , and f is a convex function of ξ with linear growth as ξ , satisfying other additional assumptions. In particular, this class includes a relativistic heat equation and a flux limited diffusion equation used in the theory of radiation hydrodynamics.

Gelfand numbers and metric entropy of convex hulls in Hilbert spaces

Bernd Carl, David E. Edmunds (2003)

Studia Mathematica

Similarity:

For a precompact subset K of a Hilbert space we prove the following inequalities: n 1 / 2 c ( c o v ( K ) ) c K ( 1 + k = 1 k - 1 / 2 e k ( K ) ) , n ∈ ℕ, and k 1 / 2 c k + n ( c o v ( K ) ) c [ l o g 1 / 2 ( n + 1 ) ε ( K ) + j = n + 1 ε j ( K ) / ( j l o g 1 / 2 ( j + 1 ) ) ] , k,n ∈ ℕ, where cₙ(cov(K)) is the nth Gelfand number of the absolutely convex hull of K and ε k ( K ) and e k ( K ) denote the kth entropy and kth dyadic entropy number of K, respectively. The inequalities are, essentially, a reformulation of the corresponding inequalities given in [CKP] which yield asymptotically optimal estimates of the Gelfand numbers cₙ(cov(K)) provided that the entropy numbers εₙ(K)...

Absence of global solutions to a class of nonlinear parabolic inequalities

M. Guedda (2002)

Colloquium Mathematicae

Similarity:

We study the absence of nonnegative global solutions to parabolic inequalities of the type u t - ( - Δ ) β / 2 u - V ( x ) u + h ( x , t ) u p , where ( - Δ ) β / 2 , 0 < β ≤ 2, is the β/2 fractional power of the Laplacian. We give a sufficient condition which implies that the only global solution is trivial if p > 1 is small. Among other properties, we derive a necessary condition for the existence of local and global nonnegative solutions to the above problem for the function V satisfying V ( x ) a | x | - b , where a ≥ 0, b > 0, p > 1 and V₊(x): = maxV(x),0....

Some logarithmic function spaces, entropy numbers, applications to spectral theory

Haroske Dorothee

Similarity:

AbstractIn [18] and [19] we have studied compact embeddings of weighted function spaces on ℝⁿ, i d : H q s ( w ( x ) , ) L ( ) , s>0, 1 < q ≤ p< ∞, s-n/q+n/p > 0, with, for example, w ( x ) = x α , α > 0, or w ( x ) = l o g β x , β > 0, and x = ( 2 + | x | ² ) 1 / 2 . We have determined the behaviour of their entropy numbers eₖ(id). Now we are interested in the limiting case 1/q = 1/p + s/n. Let w ( x ) = l o g β x , β > 0. Our results in [18] imply that id cannot be compact for any β > 0, but after replacing the target space Lₚ(ℝⁿ) by a “slightly” larger one, L ( l o g L ) - a ( ) , a...

The regularity of the positive part of functions in L 2 ( I ; H 1 ( Ω ) ) H 1 ( I ; H 1 ( Ω ) * ) with applications to parabolic equations

Daniel Wachsmuth (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let u L 2 ( I ; H 1 ( Ω ) ) with t u L 2 ( I ; H 1 ( Ω ) * ) be given. Then we show by means of a counter-example that the positive part u + of u has less regularity, in particular it holds t u + L 1 ( I ; H 1 ( Ω ) * ) in general. Nevertheless, u + satisfies an integration-by-parts formula, which can be used to prove non-negativity of weak solutions of parabolic equations.

L p -decay of solutions to dissipative-dispersive perturbations of conservation laws

Grzegorz Karch (1997)

Annales Polonici Mathematici

Similarity:

We study the decay in time of the spatial L p -norm (1 ≤ p ≤ ∞) of solutions to parabolic conservation laws with dispersive and dissipative terms added uₜ - uₓₓₜ - νuₓₓ + buₓ = f(u)ₓ or uₜ + uₓₓₓ - νuₓₓ + buₓ = f(u)ₓ, and we show that under general assumptions about the nonlinearity, solutions of the nonlinear equations have the same long time behavior as their linearizations at the zero solution.

Existence of solutions for some quasilinear p ( x ) -elliptic problem with Hardy potential

Elhoussine Azroul, Mohammed Bouziani, Hassane Hjiaj, Ahmed Youssfi (2019)

Mathematica Bohemica

Similarity:

We consider the anisotropic quasilinear elliptic Dirichlet problem - i = 1 N D i a i ( x , u , u ) + | u | s ( x ) - 1 u = f + λ | u | p 0 ( x ) - 2 u | x | p 0 ( x ) in Ω , u = 0 on Ω , where Ω is an open bounded subset of N containing the origin. We show the existence of entropy solution for this equation where the data f is assumed to be in L 1 ( Ω ) and λ is a positive constant.

Stability of periodic stationary solutions of scalar conservation laws with space-periodic flux

Anne-Laure Dalibard (2011)

Journal of the European Mathematical Society

Similarity:

This article investigates the long-time behaviour of parabolic scalar conservation laws of the type t u + div y A ( y , u ) - Δ y u = 0 , where y N and the flux A is periodic in y . More specifically, we consider the case when the initial data is an L 1 disturbance of a stationary periodic solution. We show, under polynomial growth assumptions on the flux, that the difference between u and the stationary solution behaves in L 1 norm like a self-similar profile for large times. The proof uses a time and space change of variables...

Measures of maximal entropy for random β -expansions

Karma Dajani, Martijn de Vries (2005)

Journal of the European Mathematical Society

Similarity:

Let β > 1 be a non-integer. We consider β -expansions of the form i = 1 d i / β i , where the digits ( d i ) i 1 are generated by means of a Borel map K β defined on { 0 , 1 } × [ 0 , β / ( β 1 ) ] . We show that K β has a unique mixing measure ν β of maximal entropy with marginal measure an infinite convolution of Bernoulli measures. Furthermore, under the measure ν β the digits ( d i ) i 1 form a uniform Bernoulli process. In case 1 has a finite greedy expansion with positive coefficients, the measure of maximal entropy is Markov. We also discuss the uniqueness...

On the directional entropy of ℤ²-actions generated by cellular automata

M. Courbage, B. Kamiński (2002)

Studia Mathematica

Similarity:

We show that for any cellular automaton (CA) ℤ²-action Φ on the space of all doubly infinite sequences with values in a finite set A, determined by an automaton rule F = F [ l , r ] , l,r ∈ ℤ, l ≤ r, and any Φ-invariant Borel probability measure, the directional entropy h v ( Φ ) , v⃗= (x,y) ∈ ℝ², is bounded above by m a x ( | z l | , | z r | ) l o g A if z l z r 0 and by | z r - z l | in the opposite case, where z l = x + l y , z r = x + r y . We also show that in the class of permutative CA-actions the bounds are attained if the measure considered is uniform Bernoulli.

Entropy solutions to parabolic equations in Musielak framework involving non coercivity term in divergence form

Mohamed Saad Bouh Elemine Vall, Ahmed Ahmed, Abdelfattah Touzani, Abdelmoujib Benkirane (2018)

Mathematica Bohemica

Similarity:

We prove the existence of solutions to nonlinear parabolic problems of the following type: b ( u ) t + A ( u ) = f + div ( Θ ( x ; t ; u ) ) in Q , u ( x ; t ) = 0 on Ω × [ 0 ; T ] , b ( u ) ( t = 0 ) = b ( u 0 ) on Ω , where b : is a strictly increasing function of class 𝒞 1 , the term A ( u ) = - div ( a ( x , t , u , u ) ) is an operator of Leray-Lions type which satisfies the classical Leray-Lions assumptions of Musielak type, Θ : Ω × [ 0 ; T ] × is a Carathéodory, noncoercive function which satisfies the following condition: sup | s | k | Θ ( · , · , s ) | E ψ ( Q ) for all k > 0 , where ψ is the Musielak complementary function of Θ , and the second term f belongs to L 1 ( Q ) .

Existence result for nonlinear parabolic problems with L¹-data

Abderrahmane El Hachimi, Jaouad Igbida, Ahmed Jamea (2010)

Applicationes Mathematicae

Similarity:

We study the existence of solutions of the nonlinear parabolic problem u / t - d i v [ | D u - Θ ( u ) | p - 2 ( D u - Θ ( u ) ) ] + α ( u ) = f in ]0,T[ × Ω, ( | D u - Θ ( u ) | p - 2 ( D u - Θ ( u ) ) ) · η + γ ( u ) = g on ]0,T[ × ∂Ω, u(0,·) = u₀ in Ω, with initial data in L¹. We use a time discretization of the continuous problem by the Euler forward scheme.