Displaying similar documents to “On lower bounds for the variance of functions of random variables”

Operator entropy inequalities

M. S. Moslehian, F. Mirzapour, A. Morassaei (2013)

Colloquium Mathematicae

Similarity:

We investigate a notion of relative operator entropy, which develops the theory started by J. I. Fujii and E. Kamei [Math. Japonica 34 (1989), 341-348]. For two finite sequences A = (A₁,...,Aₙ) and B = (B₁,...,Bₙ) of positive operators acting on a Hilbert space, a real number q and an operator monotone function f we extend the concept of entropy by setting S q f ( A | B ) : = j = 1 n A j 1 / 2 ( A j - 1 / 2 B j A j - 1 / 2 ) q f ( A j - 1 / 2 B j A j - 1 / 2 ) A j 1 / 2 , and then give upper and lower bounds for S q f ( A | B ) as an extension of an inequality due to T. Furuta [Linear Algebra Appl. 381 (2004),...

A local approach to g -entropy

Mehdi Rahimi (2015)

Kybernetika

Similarity:

In this paper, a local approach to the concept of g -entropy is presented. Applying the Choquet‘s representation Theorem, the introduced concept is stated in terms of g -entropy.

On the joint entropy of d -wise-independent variables

Dmitry Gavinsky, Pavel Pudlák (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

How low can the joint entropy of n d -wise independent (for d 2 ) discrete random variables be, subject to given constraints on the individual distributions (say, no value may be taken by a variable with probability greater than p , for p < 1 )? This question has been posed and partially answered in a recent work of Babai [Entropy versus pairwise independence (preliminary version), http://people.cs.uchicago.edu/ laci/papers/13augEntropy.pdf, 2013]. In this paper we improve some...

Further results on the generalized cumulative entropy

Antonio Di Crescenzo, Abdolsaeed Toomaj (2017)

Kybernetika

Similarity:

Recently, a new concept of entropy called generalized cumulative entropy of order n was introduced and studied in the literature. It is related to the lower record values of a sequence of independent and identically distributed random variables and with the concept of reversed relevation transform. In this paper, we provide some further results for the generalized cumulative entropy such as stochastic orders, bounds and characterization results. Moreover, some characterization results...

Entropy and approximation numbers of embeddings between weighted Besov spaces

Iwona Piotrowska (2008)

Banach Center Publications

Similarity:

The present paper is devoted to the study of the “quality” of the compactness of the trace operator. More precisely, we characterize the asymptotic behaviour of entropy numbers of the compact map t r Γ : B p , q s ( , w ϰ Γ ) L p ( Γ ) , where Γ is a d-set with 0 < d < n and w ϰ Γ a weight of type w ϰ Γ ( x ) d i s t ( x , Γ ) ϰ near Γ with ϰ > -(n-d). There are parallel results for approximation numbers.

Orders of accumulation of entropy

David Burguet, Kevin McGoff (2012)

Fundamenta Mathematicae

Similarity:

For a continuous map T of a compact metrizable space X with finite topological entropy, the order of accumulation of entropy of T is a countable ordinal that arises in the context of entropy structures and symbolic extensions. We show that every countable ordinal is realized as the order of accumulation of some dynamical system. Our proof relies on functional analysis of metrizable Choquet simplices and a realization theorem of Downarowicz and Serafin. Further, if M is a metrizable Choquet...

Margulis Lemma, entropy and free products

Filippo Cerocchi (2014)

Annales de l’institut Fourier

Similarity:

We prove a Margulis’ Lemma Besson-Courtois-Gallot, for manifolds whose fundamental group is a nontrivial free product A * B , without 2-torsion. Moreover, if A * B is torsion-free we give a lower bound for the homotopy systole in terms of upper bounds on the diameter and the volume-entropy. We also provide examples and counterexamples showing the optimality of our assumption. Finally we give two applications of this result: a finiteness theorem and a volume estimate for reducible manifolds. ...

Entropy solutions for nonhomogeneous anisotropic Δ p ( · ) problems

Elhoussine Azroul, Abdelkrim Barbara, Mohamed Badr Benboubker, Hassane Hjiaj (2014)

Applicationes Mathematicae

Similarity:

We study a class of anisotropic nonlinear elliptic equations with variable exponent p⃗(·) growth. We obtain the existence of entropy solutions by using the truncation technique and some a priori estimates.

On Pawlak's problem concerning entropy of almost continuous functions

Tomasz Natkaniec, Piotr Szuca (2010)

Colloquium Mathematicae

Similarity:

We prove that if f: → is Darboux and has a point of prime period different from 2 i , i = 0,1,..., then the entropy of f is positive. On the other hand, for every set A ⊂ ℕ with 1 ∈ A there is an almost continuous (in the sense of Stallings) function f: → with positive entropy for which the set Per(f) of prime periods of all periodic points is equal to A.

Jumps of entropy for C r interval maps

David Burguet (2015)

Fundamenta Mathematicae

Similarity:

We study the jumps of topological entropy for C r interval or circle maps. We prove in particular that the topological entropy is continuous at any f C r ( [ 0 , 1 ] ) with h t o p ( f ) > ( l o g | | f ' | | ) / r . To this end we study the continuity of the entropy of the Buzzi-Hofbauer diagrams associated to C r interval maps.

The topological entropy versus level sets for interval maps (part II)

Jozef Bobok (2005)

Studia Mathematica

Similarity:

Let f: [a,b] → [a,b] be a continuous function of the compact real interval such that (i) c a r d f - 1 ( y ) 2 for every y ∈ [a,b]; (ii) for some m ∈ ∞,2,3,... there is a countable set L ⊂ [a,b] such that c a r d f - 1 ( y ) m for every y ∈ [a,b]∖L. We show that the topological entropy of f is greater than or equal to log m. This generalizes our previous result for m = 2.

On the supremum of random Dirichlet polynomials

Mikhail Lifshits, Michel Weber (2007)

Studia Mathematica

Similarity:

We study the supremum of some random Dirichlet polynomials D N ( t ) = n = 2 N ε d n - σ - i t , where (εₙ) is a sequence of independent Rademacher random variables, the weights (dₙ) are multiplicative and 0 ≤ σ < 1/2. Particular attention is given to the polynomials n τ ε n - σ - i t , τ = 2 n N : P ( n ) p τ , P⁺(n) being the largest prime divisor of n. We obtain sharp upper and lower bounds for the supremum expectation that extend the optimal estimate of Halász-Queffélec, s u p t | n = 2 N ε n - σ - i t | ( N 1 - σ ) / ( l o g N ) . The proofs are entirely based on methods of stochastic processes, in particular...

Sequence entropy and rigid σ-algebras

Alvaro Coronel, Alejandro Maass, Song Shao (2009)

Studia Mathematica

Similarity:

We study relationships between sequence entropy and the Kronecker and rigid algebras. Let (Y,,ν,T) be a factor of a measure-theoretical dynamical system (X,,μ,T) and S be a sequence of positive integers with positive upper density. We prove there exists a subsequence A ⊆ S such that h μ A ( T , ξ | ) = H μ ( ξ | ( X | Y ) ) for all finite partitions ξ, where (X|Y) is the Kronecker algebra over . A similar result holds for rigid algebras over . As an application, we characterize compact, rigid and mixing extensions via relative...

ε-Entropy and moduli of smoothness in L p -spaces

A. Kamont (1992)

Studia Mathematica

Similarity:

The asymptotic behaviour of ε-entropy of classes of Lipschitz functions in L p ( d ) is obtained. Moreover, the asymptotics of ε-entropy of classes of Lipschitz functions in L p ( d ) whose tail function decreases as O ( λ - γ ) is obtained. In case p = 1 the relation between the ε-entropy of a given class of probability densities on d and the minimax risk for that class is discussed.

Gelfand numbers and metric entropy of convex hulls in Hilbert spaces

Bernd Carl, David E. Edmunds (2003)

Studia Mathematica

Similarity:

For a precompact subset K of a Hilbert space we prove the following inequalities: n 1 / 2 c ( c o v ( K ) ) c K ( 1 + k = 1 k - 1 / 2 e k ( K ) ) , n ∈ ℕ, and k 1 / 2 c k + n ( c o v ( K ) ) c [ l o g 1 / 2 ( n + 1 ) ε ( K ) + j = n + 1 ε j ( K ) / ( j l o g 1 / 2 ( j + 1 ) ) ] , k,n ∈ ℕ, where cₙ(cov(K)) is the nth Gelfand number of the absolutely convex hull of K and ε k ( K ) and e k ( K ) denote the kth entropy and kth dyadic entropy number of K, respectively. The inequalities are, essentially, a reformulation of the corresponding inequalities given in [CKP] which yield asymptotically optimal estimates of the Gelfand numbers cₙ(cov(K)) provided that the entropy numbers εₙ(K)...

Existence of entropy solutions to nonlinear degenerate parabolic problems with variable exponent and L 1 -data

Abdelali Sabri, Ahmed Jamea, Hamad Talibi Alaoui (2020)

Communications in Mathematics

Similarity:

In the present paper, we prove existence results of entropy solutions to a class of nonlinear degenerate parabolic p ( · ) -Laplacian problem with Dirichlet-type boundary conditions and L 1 data. The main tool used here is the Rothe method combined with the theory of variable exponent Sobolev spaces.