An inclusion operator in Hardy spaces on the unit ball in
M. Jevtić (1988)
Matematički Vesnik
Similarity:
M. Jevtić (1988)
Matematički Vesnik
Similarity:
Krzysztof Grelowski (2008)
Annales Polonici Mathematici
Similarity:
For a large class of Hardy fields their extensions containing non--germs are constructed. Hardy fields composed of only non--germs, apart from constants, are also considered.
Sibel Şahin (2015)
Banach Center Publications
Similarity:
Poletsky-Stessin Hardy (PS-Hardy) spaces are the natural generalizations of classical Hardy spaces of the unit disc to general bounded, hyperconvex domains. On a bounded hyperconvex domain Ω, the PS-Hardy space is generated by a continuous, negative, plurisubharmonic exhaustion function u of the domain. Poletsky and Stessin considered the general properties of these spaces and mainly concentrated on the spaces where the Monge-Ampère measure has compact support for the associated...
A. Ramayyan (1994)
Kybernetika
Similarity:
Min Hu, Dinghuai Wang (2022)
Czechoslovak Mathematical Journal
Similarity:
A version of the John-Nirenberg inequality suitable for the functions with is established. Then, equivalent definitions of this space via the norm of weighted Lebesgue space are given. As an application, some characterizations of this function space are given by the weighted boundedness of the commutator with the Hardy-Littlewood maximal operator.
Santiago Boza (2012)
Studia Mathematica
Similarity:
The purpose of this paper is to obtain a discrete version for the Hardy spaces of the weak factorization results obtained for the real Hardy spaces by Coifman, Rochberg and Weiss for p > n/(n+1), and by Miyachi for p ≤ n/(n+1). It represents an extension, in the one-dimensional case, of the corresponding result by A. Uchiyama who obtained a factorization theorem in the general context of spaces X of homogeneous type, but with some restrictions on the measure that exclude the case...
Evgeny A. Poletsky, Khim R. Shrestha (2015)
Banach Center Publications
Similarity:
In this paper we completely characterize those weighted Hardy spaces that are Poletsky-Stessin Hardy spaces . We also provide a reduction of problems to problems and demonstrate how such a reduction can be used to make shortcuts in the proofs of the interpolation theorem and corona problem.
Viktor I. Burenkov, Huseyn V. Guliyev (2004)
Studia Mathematica
Similarity:
The problem of boundedness of the Hardy-Littewood maximal operator in local and global Morrey-type spaces is reduced to the problem of boundedness of the Hardy operator in weighted -spaces on the cone of non-negative non-increasing functions. This allows obtaining sufficient conditions for boundedness for all admissible values of the parameters. Moreover, in case of local Morrey-type spaces, for some values of the parameters, these sufficient conditions are also necessary.
Alberto Fiorenza, Babita Gupta, Pankaj Jain (2008)
Studia Mathematica
Similarity:
We study the Hardy inequality and derive the maximal theorem of Hardy and Littlewood in the context of grand Lebesgue spaces, considered when the underlying measure space is the interval (0,1) ⊂ ℝ, and the maximal function is localized in (0,1). Moreover, we prove that the inequality holds with some c independent of f iff w belongs to the well known Muckenhoupt class , and therefore iff for some c independent of f. Some results of similar type are discussed for the case of small...
Sijue Wu (1995)
Studia Mathematica
Similarity:
We prove a T1 theorem and develop a version of Calderón-Zygmund theory for ω-CZO when .
R. Demazeux (2011)
Studia Mathematica
Similarity:
We complete the different cases remaining in the estimation of the essential norm of a weighted composition operator acting between the Hardy spaces and for 1 ≤ p,q ≤ ∞. In particular we give some estimates for the cases 1 = p ≤ q ≤ ∞ and 1 ≤ q < p ≤ ∞.
C. J. Neugebauer (2009)
Studia Mathematica
Similarity:
Let be the Ariõ-Muckenhoupt weight class which controls the weighted -norm inequalities for the Hardy operator on non-increasing functions. We replace the constant p by a function p(x) and examine the associated -norm inequalities of the Hardy operator.
Agnieszka Kałamajska, Katarzyna Pietruska-Pałuba (2009)
Studia Mathematica
Similarity:
Let M be an N-function satisfying the Δ₂-condition, and let ω, φ be two other functions, with ω ≥ 0. We study Hardy-type inequalities , where u belongs to some set of locally absolutely continuous functions containing . We give sufficient conditions on the triple (ω,φ,M) for such inequalities to be valid for all u from a given set . The set may be smaller than the set of Hardy transforms. Bounds for constants are also given, yielding classical Hardy inequalities with best constants. ...
Stefan Steinerberger (2015)
Studia Mathematica
Similarity:
The Hardy-Littlewood maximal function ℳ and the trigonometric function sin x are two central objects in harmonic analysis. We prove that ℳ characterizes sin x in the following way: Let be a periodic function and α > 1/2. If there exists a real number 0 < γ < ∞ such that the averaging operator has a critical point at r = γ for every x ∈ ℝ, then f(x) = a + bsin(cx+d) for some a,b,c,d ∈ ℝ. This statement can be used to derive a characterization of trigonometric functions as...
Abdelouahed El Khalil, My Driss Morchid Alaoui, Abdelfattah Touzani (2014)
Applicationes Mathematicae
Similarity:
In this paper, we study the spectrum for the following eigenvalue problem with the p-biharmonic operator involving the Hardy term: in Ω, . By using the variational technique and the Hardy-Rellich inequality, we prove that the above problem has at least one increasing sequence of positive eigenvalues.
M. Mateljević (1979)
Matematički Vesnik
Similarity:
Vakhtang Kokilashvili, Alexander Meskhi (2006)
Banach Center Publications
Similarity:
Necessary and sufficient conditions governing two-weight norm estimates for multiple Hardy and potential operators are presented. Two-weight inequalities for potentials defined on nonhomogeneous spaces are also discussed. Sketches of the proofs for most of the results are given.
Jaydeb Sarkar, Amol Sasane, Brett D. Wick (2013)
Studia Mathematica
Similarity:
In this note we establish a vector-valued version of Beurling’s theorem (the Lax-Halmos theorem) for the polydisc. As an application of the main result, we provide necessary and sufficient conditions for the “weak” completion problem in .
Dinghuai Wang (2019)
Czechoslovak Mathematical Journal
Similarity:
We obtain the factorization theorem for Hardy space via the variable exponent Lebesgue spaces. As an application, it is proved that if the commutator of Coifman, Rochberg and Weiss is bounded on the variable exponent Lebesgue spaces, then is a bounded mean oscillation (BMO) function.
Ming-Yi Lee, Chin-Cheng Lin, Ying-Chieh Lin (2010)
Studia Mathematica
Similarity:
We first show that a linear operator which is bounded on with w ∈ A₁ can be extended to a bounded operator on the weighted local Hardy space if and only if this operator is uniformly bounded on all -atoms. As an application, we show that every pseudo-differential operator of order zero has a bounded extension to .
Elijah Liflyand, Akihiko Miyachi (2009)
Studia Mathematica
Similarity:
Sufficient conditions for the boundedness of the Hausdorff operators in the Hardy spaces , 0 < p < 1, on the real line are proved. Two related negative results are also given.
Shuichi Sato (2019)
Czechoslovak Mathematical Journal
Similarity:
We consider Littlewood-Paley functions associated with a non-isotropic dilation group on . We prove that certain Littlewood-Paley functions defined by kernels with no regularity concerning smoothness are bounded on weighted spaces, , with weights of the Muckenhoupt class. This, in particular, generalizes a result of N. Rivière (1971).
David M. Boyd (1978)
Colloquium Mathematicae
Similarity:
Joseph A. Cima, Angeliki Kazas, Michael I. Stessin (2003)
Studia Mathematica
Similarity:
With φ an inner function and the multiplication operator on a given Hardy space it is known that for any given function f in the Hardy space we may use the Wold decomposition to obtain a factorization of the given f (not the Riesz factorization). This new factorization has been shown to be useful in the study of commutants of Toeplitz operators. We study the smoothness of each factor of this factorization. We show in some cases that the factors lie in the same Hardy space (or smoothness...