Semiproper ideals
Hiroshi Sakai (2005)
Fundamenta Mathematicae
Similarity:
We say that an ideal I on is semiproper if the corresponding poset is semiproper. In this paper we investigate properties of semiproper ideals on .
Hiroshi Sakai (2005)
Fundamenta Mathematicae
Similarity:
We say that an ideal I on is semiproper if the corresponding poset is semiproper. In this paper we investigate properties of semiproper ideals on .
B. Sari, Th. Schlumprecht, N. Tomczak-Jaegermann, V. G. Troitsky (2007)
Studia Mathematica
Similarity:
It is well known that the only proper non-trivial norm closed ideal in the algebra L(X) for (1 ≤ p < ∞) or X = c₀ is the ideal of compact operators. The next natural question is to describe all closed ideals of for 1 ≤ p,q < ∞, p ≠ q, or equivalently, the closed ideals in for p < q. This paper shows that for 1 < p < 2 < q < ∞ there are at least four distinct proper closed ideals in , including one that has not been studied before. The proofs use various methods...
Gülşen Ulucak, Ece Yetkin Çelikel (2020)
Czechoslovak Mathematical Journal
Similarity:
Let be a commutative ring with nonzero identity, let be the set of all ideals of and an expansion of ideals of defined by . We introduce the concept of -primary ideals in commutative rings. A proper ideal of is called a -primary ideal if whenever and , then or . Our purpose is to extend the concept of -ideals to -primary ideals of commutative rings. Then we investigate the basic properties of -primary ideals and also discuss the relations among -primary, -primary...
Ibrahim Al-Ayyoub, Mehrdad Nasernejad (2021)
Czechoslovak Mathematical Journal
Similarity:
We provide a construction of monomial ideals in such that , where denotes the least number of generators. This construction generalizes the main result of S. Eliahou, J. Herzog, M. Mohammadi Saem (2018). Working in the ring , we generalize the definition of a Freiman ideal which was introduced in J. Herzog, G. Zhu (2019) and then we give a complete characterization of such ideals. A particular case of this characterization leads to some further investigations on that generalize...
Ali Yassine, Mohammad Javad Nikmehr, Reza Nikandish (2024)
Czechoslovak Mathematical Journal
Similarity:
Let be a commutative ring with identity. We study the concept of strongly 1-absorbing primary ideals which is a generalization of -ideals and a subclass of -absorbing primary ideals. A proper ideal of is called strongly 1-absorbing primary if for all nonunit elements such that , it is either or . Some properties of strongly 1-absorbing primary ideals are studied. Finally, rings over which every semi-primary ideal is strongly 1-absorbing primary, and rings over which...
Khalid A. Mokbel (2015)
Mathematica Bohemica
Similarity:
The concept of -ideals in posets is introduced. Several properties of -ideals in -distributive posets are studied. Characterization of prime ideals to be -ideals in -distributive posets is obtained in terms of minimality of ideals. Further, it is proved that if a prime ideal of a -distributive poset is non-dense, then is an -ideal. Moreover, it is shown that the set of all -ideals of a poset with forms a complete lattice. A result analogous to separation theorem for...
Stefania Gabelli (1988)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
Similarity:
If is a domain with the ascending chain condition on (integral) invertible ideals, then the group of its invertible ideals is generated by the set of maximal invertible ideals. In this note we study some properties of and we prove that, if is a free group on , then is a locally factorial Krull domain.
Mehrdad Nasernejad, Kazem Khashyarmanesh, Leslie G. Roberts, Jonathan Toledo (2022)
Czechoslovak Mathematical Journal
Similarity:
Let be an ideal in a commutative Noetherian ring . Then the ideal has the strong persistence property if and only if for all , and has the symbolic strong persistence property if and only if for all , where denotes the th symbolic power of . We study the strong persistence property for some classes of monomial ideals. In particular, we present a family of primary monomial ideals failing the strong persistence property. Finally, we show that every square-free monomial...
Abdelamir Dabbabi, Ali Benhissi (2023)
Archivum Mathematicum
Similarity:
Let be a commutative ring and a multiplicative system of ideals. We say that is -Noetherian, if for each ideal of , there exist and a finitely generated ideal such that . In this paper, we study the transfer of this property to the polynomial ring and Nagata’s idealization.
Keivan Borna, Abolfazl Mohajer (2019)
Czechoslovak Mathematical Journal
Similarity:
When is a polynomial ring or more generally a standard graded algebra over a field , with homogeneous maximal ideal , it is known that for an ideal of , the regularity of powers of becomes eventually a linear function, i.e., for and some integers , . This motivates writing for every . The sequence , called the of the ideal , is the subject of much research and its nature is still widely unexplored. We know that is eventually constant. In this article, after proving...
Khalid A. Mokbel (2016)
Mathematica Bohemica
Similarity:
The concept of a -ideal in -distributive posets is introduced. Several properties of -ideals in -distributive posets are established. Further, the interrelationships between -ideals and -ideals in -distributive posets are investigated. Moreover, a characterization of prime ideals to be -ideals in -distributive posets is obtained in terms of non-dense ideals. It is shown that every -ideal of a -distributive meet semilattice is semiprime. Several counterexamples are discussed. ...
Themba Dube (2017)
Mathematica Bohemica
Similarity:
Let be a completely regular Hausdorff space and, as usual, let denote the ring of real-valued continuous functions on . The lattice of -ideals of has been shown by Martínez and Zenk (2005) to be a frame. We show that the spectrum of this lattice is (homeomorphic to) precisely when is a -space. This we actually show to be true not only in spaces, but in locales as well. Recall that an ideal of a commutative ring is called a -ideal if whenever two elements have the same annihilator...
Ece Yetkin Çelikel, Hani A. Khashan (2022)
Czechoslovak Mathematical Journal
Similarity:
Let be a commutative ring with identity. A proper ideal is said to be an -ideal of if for , and imply . We give a new generalization of the concept of -ideals by defining a proper ideal of to be a semi -ideal if whenever is such that , then or . We give some examples of semi -ideal and investigate semi -ideals under various contexts of constructions such as direct products, homomorphic images and localizations. We present various characterizations of this new...