The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Homeomorphisms preserving Ap.”

Pointwise multipliers on weighted BMO spaces

Eiichi Nakai (1997)

Studia Mathematica

Similarity:

Let E and F be spaces of real- or complex-valued functions defined on a set X. A real- or complex-valued function g defined on X is called a pointwise multiplier from E to F if the pointwise product fg belongs to F for each f ∈ E. We denote by PWM(E,F) the set of all pointwise multipliers from E to F. Let X be a space of homogeneous type in the sense of Coifman-Weiss. For 1 ≤ p < ∞ and for ϕ : X × + + , we denote by b m o ϕ , p ( X ) the set of all functions f L l o c p ( X ) such that s u p a X , r > 0 1 / ϕ ( a , r ) ( 1 / μ ( B ( a , r ) ) ʃ B ( a , r ) | f ( x ) - f B ( a , r ) | p d μ ) 1 / p < , where B(a,r) is the ball centered...

Partial retractions for weighted Hardy spaces

Sergei Kisliakov, Quanhua Xu (2000)

Studia Mathematica

Similarity:

Let 1 ≤ p ≤ ∞ and let w 0 , w 1 be two weights on the unit circle such that l o g ( w 0 w 1 - 1 ) B M O . We prove that the couple ( H p ( w 0 ) , H p ( w 1 ) ) of weighted Hardy spaces is a partial retract of ( L p ( w 0 ) , L p ( w 1 ) ) . This completes previous work of the authors. More generally, we have a similar result for finite families of weighted Hardy spaces. We include some applications to interpolation.

A weighted version of Journé's lemma.

Donald Krug, Alberto Torchinsky (1994)

Revista Matemática Iberoamericana

Similarity:

In this paper we discuss a weighted version of Journé's covering lemma, a substitution for Whitney decomposition of an open set in R where squares are replaced by rectangles. We then apply this result to obtain a sharp version of the atomic decomposition of the weighted Hardy spaces H (R x R ) and a description of their duals when p is close to 1.

L p weighted inequalities for the dyadic square function

Akihito Uchiyama (1995)

Studia Mathematica

Similarity:

We prove that ʃ ( S d f ) p V d x C p , n ʃ | f | p M d ( [ p / 2 ] + 2 ) V d x , where S d is the dyadic square function, M d ( k ) is the k-fold application of the dyadic Hardy-Littlewood maximal function and p > 2.

On the two-weight problem for singular integral operators

David Cruz-Uribe, Carlos Pérez (2002)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

We give A p type conditions which are sufficient for two-weight, strong ( p , p ) inequalities for Calderón-Zygmund operators, commutators, and the Littlewood-Paley square function g λ * . Our results extend earlier work on weak ( p , p ) inequalities in [13].