The level sets of iterated brownian motion
Krzysztof Burdzy, Davar Khoshnevisan (1995)
Séminaire de probabilités de Strasbourg
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Krzysztof Burdzy, Davar Khoshnevisan (1995)
Séminaire de probabilités de Strasbourg
Similarity:
S. James Taylor (2006)
Banach Center Publications
Similarity:
Brownian motion is the most studied of all stochastic processes; it is also the basis for stochastic analysis developed in the second half of the 20th century. The fine properties of the sample path of a Brownian motion have been carefully studied, starting with the fundamental work of Paul Lévy who also considered more general processes with independent increments and extended the Brownian motion results to this class. Lévy showed that a Brownian path in d (d ≥ 2) dimensions had zero...
Laurent Serlet (2000)
Séminaire de probabilités de Strasbourg
Similarity:
Buffet, Emannuel (2003)
Journal of Applied Mathematics and Stochastic Analysis
Similarity:
Jean Bertoin, Zhan Shi (1996)
Séminaire de probabilités de Strasbourg
Similarity:
Soucaliuc, Florin, Werner, Wendelin (2002)
Electronic Communications in Probability [electronic only]
Similarity:
Siva Athreya (2000)
Séminaire de probabilités de Strasbourg
Similarity:
Chang, Mou-Hsiung (1979)
International Journal of Mathematics and Mathematical Sciences
Similarity:
R.A. Doney (1998)
Séminaire de probabilités de Strasbourg
Similarity:
Abraham, Romain, Werner, Wendelin (1997)
Electronic Journal of Probability [electronic only]
Similarity:
Jonathan Warren (1999)
Séminaire de probabilités de Strasbourg
Similarity: