The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Induced modules for affine Lie algebras.”

The F-method and a branching problem for generalized Verma modules associated to ( Lie G 2 , so ( 7 ) )

Todor Milev, Petr Somberg (2013)

Archivum Mathematicum

Similarity:

The branching problem for a couple of non-compatible Lie algebras and their parabolic subalgebras applied to generalized Verma modules was recently discussed in [15]. In the present article, we employ the recently developed F-method, [10], [11] to the couple of non-compatible Lie algebras Lie G 2 i so ( 7 ) , and generalized conformal so ( 7 ) -Verma modules of scalar type. As a result, we classify the i ( Lie G 2 ) 𝔭 -singular vectors for this class of so ( 7 ) -modules.

On bounded generalized Harish-Chandra modules

Ivan Penkov, Vera Serganova (2012)

Annales de l’institut Fourier

Similarity:

Let 𝔤 be a complex reductive Lie algebra and 𝔨 𝔤 be any reductive in 𝔤 subalgebra. We call a ( 𝔤 , 𝔨 ) -module M bounded if the 𝔨 -multiplicities of M are uniformly bounded. In this paper we initiate a general study of simple bounded ( 𝔤 , 𝔨 ) -modules. We prove a strong necessary condition for a subalgebra 𝔨 to be bounded (Corollary 4.6), to admit an infinite-dimensional simple bounded ( 𝔤 , 𝔨 ) -module, and then establish a sufficient condition for a subalgebra 𝔨 to be bounded (Theorem 5.1). As a result we are...