On regularity of stationary solutions to the Navier-Stokes equation in 3D torus.
Zubelevich, Oleg (2005)
Lobachevskii Journal of Mathematics
Similarity:
Zubelevich, Oleg (2005)
Lobachevskii Journal of Mathematics
Similarity:
V. Solonnikov (1983)
Banach Center Publications
Similarity:
Claus Gerhardt (1979)
Mathematische Zeitschrift
Similarity:
Piotr Kacprzyk (2010)
Annales Polonici Mathematici
Similarity:
Global existence of regular special solutions to the Navier-Stokes equations describing the motion of an incompressible viscous fluid in a cylindrical pipe has already been shown. In this paper we prove the existence of the global attractor for the Navier-Stokes equations and convergence of the solution to a stationary solution.
Reinhard Farwig (1992)
Mathematische Zeitschrift
Similarity:
R. H. Dyer, D. E. Edmunds (1971)
Colloquium Mathematicae
Similarity:
Werner Varnhorn (2008)
Banach Center Publications
Similarity:
The motion of a viscous incompressible fluid flow in bounded domains with a smooth boundary can be described by the nonlinear Navier-Stokes equations. This description corresponds to the so-called Eulerian approach. We develop a new approximation method for the Navier-Stokes equations in both the stationary and the non-stationary case by a suitable coupling of the Eulerian and the Lagrangian representation of the flow, where the latter is defined by the trajectories of the particles...
Rainer Picard (2008)
Banach Center Publications
Similarity:
The classical Stokes system is reconsidered and reformulated in a functional analytical setting allowing for low regularity of the data and the boundary. In fact the underlying domain can be any non-empty open subset Ω of ℝ³. A suitable solution concept and a corresponding solution theory is developed.
M. Pulvirenti (2008)
Bollettino dell'Unione Matematica Italiana
Similarity:
This talk, based on a research in collaboration with E. Caglioti and F.Rousset, deals with a modified version of the two-dimensional Navier-Stokes equation wich preserves energy and momentum of inertia. Such a new equation is motivated by the occurrence of different dissipation time scales. It is also related to the gradient flow structure of the 2-D Navier-Stokes equation. The hope is to understand intermediate asymptotics.
Kwang-Ok Li, Yong-Ho Kim (2023)
Applications of Mathematics
Similarity:
This paper is concerned with the 3D inhomogeneous incompressible Navier-Stokes equations with damping. We find a range of parameters to guarantee the existence of global strong solutions of the Cauchy problem for large initial velocity and external force as well as prove the uniqueness of the strong solutions. This is an extension of the theorem for the existence and uniqueness of the 3D incompressible Navier-Stokes equations with damping to inhomogeneous viscous incompressible fluids. ...
Michael Wiegner (2003)
Banach Center Publications
Similarity:
M.D. Gunzburger, J.S. Peterson (1983)
Numerische Mathematik
Similarity:
Jishan Fan, Xuanji Jia, Yong Zhou (2019)
Applications of Mathematics
Similarity:
This paper proves a logarithmic regularity criterion for 3D Navier-Stokes system in a bounded domain with the Navier-type boundary condition.
A. Fettah, T. Gallouët, H. Lakehal (2014)
Annales de la faculté des sciences de Toulouse Mathématiques
Similarity:
In this paper, we prove the existence of a solution for a quite general stationary compressible Stokes problem including, in particular, gravity effects. The Equation Of State gives the pressure as an increasing superlinear function of the density. This existence result is obtained by passing to the limit on the solution of a viscous approximation of the continuity equation.
M. Giaquinta, G. Modica (1982)
Journal für die reine und angewandte Mathematik
Similarity:
Jens Frehse, Michael Ruzicka (1995)
Mathematische Annalen
Similarity: