Displaying similar documents to “Extending quasi-invariant measures by using subgroups of a given group.”

On a one-dimensional analogue of the Smale horseshoe

Ryszard Rudnicki (1991)

Annales Polonici Mathematici

Similarity:

We construct a transformation T:[0,1] → [0,1] having the following properties: 1) (T,|·|) is completely mixing, where |·| is Lebesgue measure, 2) for every f∈ L¹ with ∫fdx = 1 and φ ∈ C[0,1] we have φ ( T n x ) f ( x ) d x φ d μ , where μ is the cylinder measure on the standard Cantor set, 3) if φ ∈ C[0,1] then n - 1 i = 0 n - 1 φ ( T i x ) φ d μ for Lebesgue-a.e. x.

Weakly α-favourable measure spaces

David Fremlin (2000)

Fundamenta Mathematicae

Similarity:

I discuss the properties of α-favourable and weakly α-favourable measure spaces, with remarks on their relations with other classes.

Almost Everywhere Convergence of Riesz-Raikov Series

Ai Fan (1995)

Colloquium Mathematicae

Similarity:

Let T be a d×d matrix with integer entries and with eigenvalues >1 in modulus. Let f be a lipschitzian function of positive order. We prove that the series n = 1 c n f ( T n x ) converges almost everywhere with respect to Lebesgue measure provided that n = 1 | c n | 2 l o g 2 n < .

Quantitative Isoperimetric Inequalities on the Real Line

Yohann de Castro (2011)

Annales mathématiques Blaise Pascal

Similarity:

In a recent paper A. Cianchi, N. Fusco, F. Maggi, and A. Pratelli have shown that, in the Gauss space, a set of given measure and almost minimal Gauss boundary measure is necessarily close to be a half-space. Using only geometric tools, we extend their result to all symmetric log-concave measures on the real line. We give sharp quantitative isoperimetric inequalities and prove that among sets of given measure and given asymmetry (distance to half line, i.e. distance to sets...

On L 1 Space Formed by Real-Valued Partial Functions

Yasushige Watase, Noboru Endou, Yasunari Shidama (2008)

Formalized Mathematics

Similarity:

This article contains some definitions and properties refering to function spaces formed by partial functions defined over a measurable space. We formalized a function space, the so-called L1 space and proved that the space turns out to be a normed space. The formalization of a real function space was given in [16]. The set of all function forms additive group. Here addition is defined by point-wise addition of two functions. However it is not true for partial functions. The set of partial...

Delayed von Foerster equation.

Haribash, Najemedin (2001)

Zeszyty Naukowe Uniwersytetu Jagiellońskiego. Universitatis Iagellonicae Acta Mathematica

Similarity: