Displaying similar documents to “Foliations by minimal surfaces and contact structures on certain closed 3-manifolds.”

De Rham decomposition theorems for foliated manifolds

Robert A. Blumenthal, James J. Hebda (1983)

Annales de l'institut Fourier

Similarity:

We prove that if M is a complete simply connected Riemannian manifold and F is a totally geodesic foliation of M with integrable normal bundle, then M is topologically a product and the two foliations are the product foliations. We also prove a decomposition theorem for Riemannian foliations and a structure theorem for Riemannian foliations with recurrent curvature.

The automorphism groups of foliations with transverse linear connection

Nina Zhukova, Anna Dolgonosova (2013)

Open Mathematics

Similarity:

The category of foliations is considered. In this category morphisms are differentiable maps sending leaves of one foliation into leaves of the other foliation. We prove that the automorphism group of a foliation with transverse linear connection is an infinite-dimensional Lie group modeled on LF-spaces. This result extends the corresponding result of Macias-Virgós and Sanmartín Carbón for Riemannian foliations. In particular, our result is valid for Lorentzian and pseudo-Riemannian...

On riemannian foliations with minimal leaves

Jesús A. Alvarez Lopez (1990)

Annales de l'institut Fourier

Similarity:

For a Riemannian foliation, the topology of the corresponding spectral sequence is used to characterize the existence of a bundle-like metric such that the leaves are minimal submanifolds. When the codimension is 2 , a simple characterization of this geometrical property is proved.