О многообразии в -мерном проективном пространстве
Е.Т. Ивлев (1967)
Sibirskij matematiceskij zurnal
Similarity:
Е.Т. Ивлев (1967)
Sibirskij matematiceskij zurnal
Similarity:
А.Л. Гаркави (1997)
Sibirskij matematiceskij zurnal
Similarity:
В.А. Шлык (1993)
Sibirskij matematiceskij zurnal
Similarity:
Р. Гончигдорж (1982)
Sibirskij matematiceskij zurnal
Similarity:
А.А. Лебедев (1997)
Sibirskij matematiceskij zurnal
Similarity:
Д.Е. Вольпер (1994)
Sibirskij matematiceskij zurnal
Similarity:
О.И. Жукова (1998)
Sibirskij matematiceskij zurnal
Similarity:
Martina Pavlačková (2019)
Czechoslovak Mathematical Journal
Similarity:
The paper deals with the existence of a Kneser solution of the -th order nonlinear differential inclusion where , and , are upper-Carathéodory mappings. The derived result is finally illustrated by the third order Kneser problem.
Bellaouar Djamel, Boudaoud Abdelmadjid, Özen Özer (2019)
Czechoslovak Mathematical Journal
Similarity:
Let be the set of positive integers and let . We denote by the arithmetic function given by , where is the number of positive divisors of . Moreover, for every we denote by the sequence We present classical and nonclassical notes on the sequence , where , , are understood as parameters.
А.М. Вершик (1972)
Zapiski naucnych seminarov Leningradskogo
Similarity:
Monica Musso, Angela Pistoia (2007)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
We consider the problem where and are smooth bounded domains in , , and We prove that if the size of the hole goes to zero and if, simultaneously, the parameter goes to zero at the appropriate rate, then the problem has a solution which blows up at the origin.
Swami Jnanananda (1936)
Časopis pro pěstování matematiky a fysiky
Similarity:
Gryzlov, A.
Similarity: