Displaying similar documents to “Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel”

Les fonctions surharmoniques associées à un opérateur elliptique du second ordre à coefficients discontinus

Rose-Marie Hervé, Michel Hervé (1969)

Annales de l'institut Fourier

Similarity:

On étend aux solutions et sursolutions locales d’une équation elliptique de la forme - i u x i + j a i j u x i + d j u + i b i u x i + c u = 0 les propriétés démontrées dans le cas d i = b i = c = 0  : les solutions locales forment un système de fonctions harmoniques satisfaisant à l’axiomatique de M. Brelot, les fonctions surharmoniques coïncidant p.p. avec les sursolutions locales ; un principe du maximum pour les fonctions sous-harmoniques majorées par une fonction ϵ W 0 1 , 2  ; la stabilité par balayage sur un ensemble quelconque des fonctions...

Quelques propriétés des sursolutions et sursolutions locales d’une équation uniformément elliptique de la forme L u = - i x i ( j a i j u x j ) = 0

Rose-Marie Hervé (1966)

Annales de l'institut Fourier

Similarity:

L’objet de cet article est l’étude de la classe des fonctions surharmoniques associées à l’opérateur L et appartenant à W 1 , 2 (resp. W loc 1 , 2 ) : on commence par montrer qu’elles coïncident avec les sursolutions (resp. sursolutions locales) ; puis on étudie les propriétés de stabilité de cette classe, en particulier par balayage sur un ensemble quelconque ; enfin on caractérise les potentiels ϵ 0 1 , 2 , qui sont les potentiels d’énergie finie.

Axiomatique des fonctions biharmoniques. II

Emmanuel P. Smyrnelis (1976)

Annales de l'institut Fourier

Similarity:

Dans un espace biharmonique, on définit un balayage de couples de mesures et, en particulier, on retrouve les trois mesures du problème de Riquier. Une de ces mesures n’étant pas harmonique, son étude présente un certain intérêt. On établit, dans ce cadre, des inégalités de type Harnack et on introduit les fonctions hyperharmoniques d’ordre 2. Le problème de la construction d’un espace biharmonique à partir de deux espaces harmoniques est aussi étudié. Enfin, on donne des applications...

Allure à la frontière minimale d'une classe de transformations. Théorème de Doob généralisé

Daniel Sibony (1968)

Annales de l'institut Fourier

Similarity:

On étend dans un cadre abstrait les théorèmes classiques de Fatou, Riesz, sur l’allure à la frontière d’une fonction analytique, théorèmes établis par Constantinescu-Cornéa et Doob dans le cas des surfaces de Riemann. On envisage ici des correspondances entre deux espaces localement compacts, chacun muni d’un cône de fonctions numériques qui généralise le cône des fonctions surharmoniques 0 . On applique cette étude au cas où les deux espaces sont des espaces harmoniques au sens de H. Bauer,...

Quelques propriétés des fonctions surharmoniques associées à une équation uniformément elliptique de la forme L u = - i x i ( j a i j u x j ) = 0

Rose-Marie Hervé (1965)

Annales de l'institut Fourier

Similarity:

Si l’on prend comme fonctions harmoniques les solutions locales de l’équation, les fonctions surharmoniques associées sont telles que les potentiels de support ponctuel donné sont proportionnels et que l’effilement ne dépend pas de l’opérateur L  ; on détermine aussi la plus grande minorante harmonique dans ω et W 1 , 2 ( ω ) .

Approximation et caractère de quasi-analyticité dans la théorie axiomatique des fonctions harmoniques

A. de La Pradelle (1967)

Annales de l'institut Fourier

Similarity:

Dans le cadre de l’axiomatique de M. Brelot, et en utilisant la théorie des fonctions harmoniques adjointes de Madame R.M. Hervé, on caractérise la propriété de quasi-analycité notée A *  : toute fonction harmonique adjointe dans un domaine est nulle dès qu’elle est nulle au voisinage d’un point. On montre que A * est équivalente à une propriété d’approximation de toute fonction réelle finie continue sur les frontières d’ouverts relativement compacts. Cette approximation est réalisée à l’aide...