Displaying similar documents to “À propos du mémoire de Vincent-Smith sur l'approximation des fonctions harmoniques”

Principe du minimum et maximalité en théorie du potentiel

Gabriel Mokobodski, Daniel Sibony (1967)

Annales de l'institut Fourier

Similarity:

Dans ce travail, on s’est posé le problème suivant : étant donné un cône convexe S de fonction s.c.i. sur Ω localement compact, à quelles conditions L est-il le cône des fonctions surharmoniques dans Ω pour une certaine théorie locale du potentiel, à construire effectivement à partir de S  ? On montre que si S est maximal (dans l’ensemble des cônes de fonctions vérifiant un principe du minimum), séparant et contient assez de fonctions continues, on peut construire un faisceau de cônes...

Majorantes surharmoniques minimales d'une fonction continue

Jean-Jacques Moreau (1971)

Annales de l'institut Fourier

Similarity:

Soit Ω , ouvert de R n et f : Ω R , continue. On dit qu’une majorante surharmonique de f dans Ω est minimale si cette majorante surharmonique est harmonique dans l’ensemble (ouvert) où elle diffère de f . Beaucoup de propriétés de ces fonctions sont semblables à celles des fonctions harmoniques 0 (lesquelles correspondent à f = 0 ) ; par exemple la famille entière est uniformément équicontinue dans chaque partie compacte de Ω , relativement à la structure uniforme de R . On traite le problème de Dirichlet :...

Quelques propriétés des sursolutions et sursolutions locales d’une équation uniformément elliptique de la forme L u = - i x i ( j a i j u x j ) = 0

Rose-Marie Hervé (1966)

Annales de l'institut Fourier

Similarity:

L’objet de cet article est l’étude de la classe des fonctions surharmoniques associées à l’opérateur L et appartenant à W 1 , 2 (resp. W loc 1 , 2 ) : on commence par montrer qu’elles coïncident avec les sursolutions (resp. sursolutions locales) ; puis on étudie les propriétés de stabilité de cette classe, en particulier par balayage sur un ensemble quelconque ; enfin on caractérise les potentiels ϵ 0 1 , 2 , qui sont les potentiels d’énergie finie.

Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel

Rose-Marie Hervé (1962)

Annales de l'institut Fourier

Similarity:

Ces recherches prolongent l’axiomatique des fonctions harmoniques de M. Brelot. Dans un espace Ω localement compact, connexe et localement connexe, qu’on supposera le plus souvent à base dénombrable, les fonctions harmoniques satisfont à trois axiomes : le 1er est un axiome de faisceau ; le 2e pose l’existence d’une base de la topologie formée de domaines réguliers, c’est-à-dire pour lesquels le problème de Dirichlet admet une solution unique, croissant avec la donnée ; le...