Displaying similar documents to “Formules explicites pour les solutions minimales de l’équation ¯ u = f dans la boule et dans le polydisque de n

Approximation de fonctions à valeurs dans un Fréchet par des fonctions holomorphes

Nessim Sibony (1974)

Annales de l'institut Fourier

Similarity:

Soit K un compact de C n de la forme K = Π i = 1 r K i où chaque K i est soit l’adhérence d’un domaine strictement pseudoconvexe dans C n i , soit l’adhérence d’un polyèdre de Weil régulier, ou encore un compact de C . E étant un espace de Fréchet, on montre que lorsque f appartient à C 1 ( K , E ) avec f 0 alors f est approchable uniformément sur K par des fonctions holomorphes au voisinage de K et à valeurs dans E . On donne également des résultats de localisation pour l’espace H ( K , E ) .

Sur un théorème général de probabilité

Alfred Rényi (1949)

Annales de l'institut Fourier

Similarity:

L’auteur généralise un théorème qu’il a déjà donné (J. de Math. 28 (949)). Envisageant un champ de probabilités au sens de Kolmogoroff, il élargit puis étudie la notion de discrépance, en introduisant la discrépance D y ( x ) d’une variable aléatoire x par rapport à une autre variable aléatoire y  ; elle se réduit au coefficient de corrélation si x et y sont des variables caractéristiques. Il introduit aussi la notion de suite de variables aléatoires “presque indépendantes deux à deux”, avec...

Sur les moyennes arithmétiques des suites de fonctions orthogonales

I. S. Gal (1949)

Annales de l'institut Fourier

Similarity:

Soit { φ ν ( x ) } une suite orthonormale dans l’intervalle ( - < a x b < ) . L’auteur démontre, que ν = 1 N 1 - ν - 1 N φ ν ( x ) = 0 N 1 2 ( log N ) 1 2 + ϵ pour tout ϵ > 0 et presque partout dans a x b . La démonstration est basée sur un théorème de MM. Gál et Koksma et on peut généraliser aussi pour le cas - x (théorème auxiliaire). En utilisant ce théorème auxiliaire on obtient tout de suite l’estimation connue pour les fonctions de Lebesgue (théorème 2) [voir Kaczmarcz et Steinhaus, Theorie der Orthogonalreihen, Warszawa, 1935, 577].

Régularité höldérienne de l’opérateur ¯ sur le triangle de Hartogs

Jacques Chaumat, Anne-Marie Chollet (1991)

Annales de l'institut Fourier

Similarity:

On résout à l’aide de formules intégrales explicites les équations de Cauchy-Riemann sur le triangle de Hartogs. On montre que, si la donnée est dans une classe höldérienne C p , α , la solution est dans la même classe.

Récurrences 2 - et 3 -mahlériennes

Bernard Randé (1993)

Journal de théorie des nombres de Bordeaux

Similarity:

On sait (Cobham) qu’une suite 2 - et 3 -automatique est une suite rationnelle. Une question de Loxton et van der Poorten étend ce résultat au cas 2 - et 3 -régulier. On montre dans cet article que, si une suite vérifie une récurrence 2 - et 3 -mahlérienne d’ordre un, elle est rationnelle.