Boundary behaviour of harmonic functions in a half-space and brownian motion

D. L. Burkholder; Richard F. Gundy

Annales de l'institut Fourier (1973)

  • Volume: 23, Issue: 4, page 195-212
  • ISSN: 0373-0956

Abstract

top
Let u be harmonic in the half-space R + n + 1 , n 2 . We show that u can have a fine limit at almost every point of the unit cubs in R n = R + n + 1 but fail to have a nontangential limit at any point of the cube. The method is probabilistic and utilizes the equivalence between conditional Brownian motion limits and fine limits at the boundary.In R + 2 it is known that the Hardy classes H p , 0 < p < , may be described in terms of the integrability of the nontangential maximal function, or, alternatively, in terms of the integrability of a Brownian motion maximal function. This result is shown to hold in R + n + 1 , for n 2 .

How to cite

top

Burkholder, D. L., and Gundy, Richard F.. "Boundary behaviour of harmonic functions in a half-space and brownian motion." Annales de l'institut Fourier 23.4 (1973): 195-212. <http://eudml.org/doc/74146>.

@article{Burkholder1973,
abstract = {Let $u$ be harmonic in the half-space $R^\{n+1\}_+$, $n\ge 2$. We show that $u$ can have a fine limit at almost every point of the unit cubs in $R^n=\partial R^\{n+1\}_+$ but fail to have a nontangential limit at any point of the cube. The method is probabilistic and utilizes the equivalence between conditional Brownian motion limits and fine limits at the boundary.In $R^2_+$ it is known that the Hardy classes $H^p$, $0&lt; p&lt; \infty $, may be described in terms of the integrability of the nontangential maximal function, or, alternatively, in terms of the integrability of a Brownian motion maximal function. This result is shown to hold in $R^\{n+1\}_+$, for $n\ge 2$.},
author = {Burkholder, D. L., Gundy, Richard F.},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {4},
pages = {195-212},
publisher = {Association des Annales de l'Institut Fourier},
title = {Boundary behaviour of harmonic functions in a half-space and brownian motion},
url = {http://eudml.org/doc/74146},
volume = {23},
year = {1973},
}

TY - JOUR
AU - Burkholder, D. L.
AU - Gundy, Richard F.
TI - Boundary behaviour of harmonic functions in a half-space and brownian motion
JO - Annales de l'institut Fourier
PY - 1973
PB - Association des Annales de l'Institut Fourier
VL - 23
IS - 4
SP - 195
EP - 212
AB - Let $u$ be harmonic in the half-space $R^{n+1}_+$, $n\ge 2$. We show that $u$ can have a fine limit at almost every point of the unit cubs in $R^n=\partial R^{n+1}_+$ but fail to have a nontangential limit at any point of the cube. The method is probabilistic and utilizes the equivalence between conditional Brownian motion limits and fine limits at the boundary.In $R^2_+$ it is known that the Hardy classes $H^p$, $0&lt; p&lt; \infty $, may be described in terms of the integrability of the nontangential maximal function, or, alternatively, in terms of the integrability of a Brownian motion maximal function. This result is shown to hold in $R^{n+1}_+$, for $n\ge 2$.
LA - eng
UR - http://eudml.org/doc/74146
ER -

References

top
  1. [1] J. M. BRELOT and L. DOOB, Limites angulaires et limites fines, Ann. Inst. Fourier (Grenoble), 13, (1963), 395-415. Zbl0132.33902MR33 #4299
  2. [2] D.L. BURKHOLDER and R.F. GUNDY, Distribution function inequalities for the area integral, Studia Math., 44, (1972), 527-544. Zbl0219.31009MR49 #5309
  3. [3] D.L. BURKHOLDER, R.F. GUNDY and M. L. SILVERSTEIN, A maximal function characterization of the class Hp, Trans. Amer. Math. Soc., 157 (1971), 137-153. Zbl0223.30048MR43 #527
  4. [4] A. P. CALDERÓN, On the behaviour of harmonic functions at the boundary, Trans. Amer. Math. Soc., 68, (1950), 47-54. Zbl0035.18901MR11,357e
  5. [5] A. P. CALDERÓN, On a theorem of Marcinkiewicz and Zygmund, Trans. Amer. Math. Soc., 68, (1950), 55-61. Zbl0035.18903MR11,357f
  6. [6] L. CARLESON, On the existence of boundary values for harmonic functions in several variables, Arkiv för Mathematik, 4, (1961), 393-399. Zbl0107.08402MR28 #2232
  7. [7] C. CONSTANTINESCU and A. CORNEA, Über das Verhalten der analytischen Abildungen Riemannscher Flachen auf dem idealen Rand von Martin, Nagoya Math. J., 17, (1960), 1-87. Zbl0104.29901MR23 #A1025
  8. [8] J. L. DOOB, Conditional Brownian motion and the boundary limits of harmonic functions, Bull. Soc. Math. France, 85, (1957), 431-458. Zbl0097.34004MR22 #844
  9. [9] J. L. DOOB, Boundary limit theorems for a half-space, J. Math. Pures Appl., (9) 37, (1958), 385-392. Zbl0097.34101MR22 #845
  10. [10] C. FEFFERMAN and E. M. STEIN, Hp-spaces in several variables, Acta Math., 129, (1972), 137-193. Zbl0257.46078MR56 #6263
  11. [11] G. H. HARDY and J. E. LITTLEWOOD, Some properties of conjugate functions, J. fur Mat., 167, (1931), 405-423. Zbl0003.20203JFM58.0333.03
  12. [12] J. LELONG, Review 4471, Math. Reviews, 40, (1970), 824-825. 
  13. [13] J. LELONG, Étude au voisinage de la frontière des fonctions surharmoniques positives dans un demi-espace, Ann. Sci. École Norm. Sup., 66, (1949), 125-159. Zbl0033.37301
  14. [14] J. MARCINKIEWICZ and A. ZYGMUND, A theorem of Lusin, Duke Math. J., 4, (1938), 473-485. Zbl0019.42001JFM64.0268.01
  15. [15] H. P. McKEAN Jr., Stochastic integrals, Academic Press, New York, 1969. Zbl0191.46603
  16. [16] L. NAÏM, Sur le rôle de la frontière de R. S. Martin dans la Théorie du potential, Ann. Inst. Fourier (Grenoble), 7, (1957), 183-285. Zbl0086.30603MR20 #6608
  17. [17] I. I. PRIVALOV, Integral Cauchy, Saratov, 1919. 
  18. [18] D. SPENCER, A function-theoretic identity, Amer. J. Math., 65, (1943), 147-160. Zbl0060.20603MR4,137f
  19. [19] E. M. STEIN, On the theory of harmonic functions of several variables II. Behaviour near the boundary, Acta Math., 106, (1961), 137-174. Zbl0111.08001MR30 #3234
  20. [20] E. M. STEIN and G. WEISS, On the theory of harmonic functions of several variables I. The theory of Hp-spaces, Acta Math., 103, (1960), 25-62. Zbl0097.28501MR22 #12315
  21. [21] J. L. WALSH, The approximation of harmonic functions by harmonic polynomials and harmonic rational functions, Bull. Amer. Math. Soc., 35, (1929), 499-544. Zbl55.0889.05JFM55.0889.05

NotesEmbed ?

top

You must be logged in to post comments.