Displaying similar documents to “Applications de la notion d'entropie au développement d'un nombre réel dans une base de Pisot”

Nombres normaux dans diverses bases

Anne Bertrand-Mathis (1995)

Annales de l'institut Fourier

Similarity:

En s’inspirant d’un article de Feldman et Smorodinsky on étudie l’apparition d’un bloc de chiffres fixé dans le θ -développement de β n . On montre que si β et θ sont des nombres de Pisot non équivalents, les ensembles des nombres normaux au sens des chiffres pour β et θ sont différents, et que si θ est un Pisot et β un entier algébrique non équivalent à θ , les ensembles des nombres géométriquement normaux relativement à β et θ sont distincts.

Réalisation de formes -bilinéaires symétriques comme formes trace hermitiennes amplifiées

Grégory Berhuy (2000)

Journal de théorie des nombres de Bordeaux

Similarity:

Dans cet article, on montre de manière explicite que toute forme -bilinéaire symétrique non dégénérée de rang pair, et non -isomorphe au plan hyperbolique, se réalise comme forme trace hermitienne amplifiée d’une algèbre [ α ] , où α est un entier algébrique. Plus précisemment, on montre que pour tout S M 2 n ( ) symétrique, avec det S 0 (et det S ¬ - 1 (mod * 2 ) si n = 1 ), il existe un entier algébrique α , une involution -linéaire σ de ( α ) , λ ( α ) σ -symétrique et une -base v 1 , , v 2 n d’un idéal de [ α ] tels que S = ( T r ( α ) / ( λ v i v j σ ) ) .

Compétition Réaction-Diffusion et comportement asymptotique d’un problème d’obstacle doublement non linéaire

Fahd Karami (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

Le but de cet article est l’étude de la compétition Réaction-Diffusion pour un problème de type β ( w ) t - d ε div a ( x , D w ) + r ε g x , β ( w ) = f , a est un opérateur de Lerray-Lions, β est une fonction continue croissante et la réaction g est une fonction croissante qui dépend de l’espace x . On suppose que les coefficients de diffusion d ε et de Réaction r ε dépendent du paramètre ε avec d ε et/ou r ε tends vers + lorsque ε 0 . Dans le cas où, le coefficient de réaction est très rapide, nous étudions le comportement asymptotique lorsque t ...

Systèmes aux q -différences singuliers réguliers : classification, matrice de connexion et monodromie

Jacques Sauloy (2000)

Annales de l'institut Fourier

Similarity:

G.D. Birkhoff a posé, par analogie avec le cas classique des équations différentielles, le problème de Riemann-Hilbert pour les systèmes “fuchsiens” aux q -différences linéaires, à coefficients rationnels. Il l’a résolu dans le cas générique: l’objet classifiant qu’il introduit est constitué de la matrice de connexion P et des exposants en 0 et . Nous reprenons sa méthode dans le cas général, mais en traitant symétriquement 0 et et sans recours à des solutions à croissance “sauvage”....

Sur les -classes d’idéaux dans les extensions cycliques relatives de degré premier

Georges Gras (1973)

Annales de l'institut Fourier

Similarity:

Soit H ( K ) le -groupe des classes d’idéaux d’une extension K / k cyclique de degré premier et soit H i = Ker ( σ - 1 ) i ( σ générateur de Gal ( K / k ) ). Un procédé généralisant la formule de Chevalley (formule des classes “ambiges”) permet de déterminer H i + 1 et l’ordre de H i + 1 / H i à partir de H i . On obtient donc une méthode qui permet, d’une part, une détermination effective de la structure de H ( K ) et, d’autre part, une étude générale des problèmes de -classes d’idéaux.