The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Decay of solutions of the wave equation in the exterior of several convex bodies”

Scattering theory for a nonlinear system of wave equations with critical growth

Changxing Miao, Youbin Zhu (2006)

Colloquium Mathematicae

Similarity:

We consider scattering properties of the critical nonlinear system of wave equations with Hamilton structure ⎧uₜₜ - Δu = -F₁(|u|²,|v|²)u, ⎨ ⎩vₜₜ - Δv = -F₂(|u|²,|v|²)v, for which there exists a function F(λ,μ) such that ∂F(λ,μ)/∂λ = F₁(λ,μ), ∂F(λ,μ)/∂μ = F₂(λ,μ). By using the energy-conservation law over the exterior of a truncated forward light cone and a dilation identity, we get a decay estimate for...

Invisible obstacles

A. G. Ramm (2007)

Annales Polonici Mathematici

Similarity:

It is proved that one can choose a control function on an arbitrarilly small open subset of the boundary of an obstacle so that the total radiation from this obstacle for a fixed direction of the incident plane wave and for a fixed wave number will be as small as one wishes. The obstacle is called "invisible" in this case.

Small data scattering for nonlinear Schrödinger wave and Klein-Gordon equations

Makoto Nakamura, Tohru Ozawa (2002)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

Small data scattering for nonlinear Schrödinger equations (NLS), nonlinear wave equations (NLW), nonlinear Klein-Gordon equations (NLKG) with power type nonlinearities is studied in the scheme of Sobolev spaces on the whole space n with order s < n / 2 . The assumptions on the nonlinearities are described in terms of power behavior p 1 at zero and p 2 at infinity such as 1 + 4 / n p 1 p 2 1 + 4 / ( n - 2 s ) for NLS and NLKG, and 1 + 4 / ( n - 1 ) p 1 p 2 1 + 4 / ( n - 2 s ) for NLW.