The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Sur l’espace de modules des faisceaux semi stables de rang 2, de classes de Chern (0,3) sur 2

Sections du fibré déterminant sur l'espace de modules des faisceaux semi-stables de rang 2 sur le plan projectif

Gentiana Danila (2000)

Annales de l'institut Fourier

Similarity:

La conjecture de “dualité étrange” de Le Potier donne un isomorphisme entre l’espace des sections du fibré déterminant sur deux espaces de modules différents de faisceaux semi-stables sur le plan projectif 2 . Si on considère deux classes orthogonales c , u dans l’algèbre de Grothendieck K ( 2 ) telles que c est de rang strictement positif et u est de rang zéro, on note M c et M u les espaces de modules de faisceaux semi-stables de classe c , respectivement u , sur 2 . Il existe sur M c (resp. M u ) un fibré...

Groupe de Picard des variétés de modules de faisceaux semi-stables sur 2 ( )

Jean-Marc Drezet (1988)

Annales de l'institut Fourier

Similarity:

Le sujet de cet article est le groupe de Picard de la variété de modules M ( r , c 1 , c 2 ) des faisceaux algébriques semi-stables de rang r et de classes de Chern c 1 , c 2 sur P 2 ( C ) . Le premier résultat est que M ( r , c 1 , c 2 ) est localement factorielle, ce qui permet d’identifier Pic ( M ( r , c 1 , c 2 ) ) et le groupe des classes d’équivalence linéaire des diviseurs de Weil de M ( r , c 1 , c 2 ) ) . Il existe une unique application δ : Q Q telle que dim ( M ( r , c 1 , c 2 ) ) > 0 si et seulement si ( c 2 - ( r - 1 ) c 1 2 / 2 r ) / r > δ ( c 1 / r ) . Si on a égalité, Pic ( M ( r , c 1 , c 2 ) ) est isomorphe à Z , et si l’inégalité est stricte, Pic ( M ( r , c 1 , c 2 ) ) est isomorphe à Z 2 ....

Variétés de modules alternatives

Jean-Marc Drezet (1999)

Annales de l'institut Fourier

Similarity:

Soit X une variété algébrique projective lisse irréductible. On appelle de faisceaux sur X une famille de faisceaux cohérents sur X paramétrée par une variété intègre M , possédant les propriétés suivantes : est plate sur M ; pour tous x , y M distincts, les faisceaux x et y sur X ne sont pas isomorphes et est une déformation complète de x ; enfin possède une propriété universelle locale évidente. On a aussi la notion de variété de modules fins , où est remplacée par une famille ( i ) , i ...

Sur le morphisme de Barth

Joseph Le Potier, Alexander Tikhomirov (2001)

Annales scientifiques de l'École Normale Supérieure

Similarity:

𝒟 -modules et faisceaux pervers dont le support singulier est un croisement normal

André Galligo, Michel Granger, Philippe Maisonobe (1985)

Annales de l'institut Fourier

Similarity:

Dans cet article on étudie les 𝒟 -modules dont le support singulier est un croisement normal dans C n , par l’intermédiaire de la catégorie équivalente de faisceaux pervers. On montre qu’ils sont caractérisés, à isomorphisme près, par la donnée suivante : un hypercube constitué par des espaces vectoriels de dimension finie F I indexés par les parties de { 1 , ... , n } , et des applications linéaires F I F I { i } soumises à certaines conditions de commutativité et d’inversibilité. Ce résultat est exprimé sous forme...