Displaying similar documents to “Class groups of abelian fields, and the main conjecture”

On Tate’s refinement for a conjecture of Gross and its generalization

Noboru Aoki (2004)

Journal de Théorie des Nombres de Bordeaux

Similarity:

We study Tate’s refinement for a conjecture of Gross on the values of abelian L -function at s = 0 and formulate its generalization to arbitrary cyclic extensions. We prove that our generalized conjecture is true in the case of number fields. This in particular implies that Tate’s refinement is true for any number field.

On the classgroups of imaginary abelian fields

David Solomon (1990)

Annales de l'institut Fourier

Similarity:

Let p be an odd prime, χ an odd, p -adic Dirichlet character and K the cyclic imaginary extension of Q associated to χ . We define a “ χ -part” of the Sylow p -subgroup of the class group of K and prove a result relating its p -divisibility to that of the generalized Bernoulli number B 1 , χ - 1 . This uses the results of Mazur and Wiles in Iwasawa theory over Q . The more difficult case, in which p divides the order of χ is our chief concern. In this case the result is new and confirms an earlier conjecture...

Annihilators of the class group of a compositum of quadratic fields

Jan Herman (2013)

Archivum Mathematicum

Similarity:

This paper is devoted to a construction of new annihilators of the ideal class group of a tamely ramified compositum of quadratic fields. These annihilators are produced by a modified Rubin’s machinery. The aim of this modification is to give a stronger annihilation statement for this specific type of fields.