The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Noyau de Cauchy-Szegö d'un espace symétrique de type Cayley”

Calcul symbolique dans le centre d'une algèbre de groupe

Noël Leblanc (1969)

Annales de l'institut Fourier

Similarity:

Si G est un groupe de Lie compact semi-simple, il existe des fonctions non analytiques qui opèrent dans le centre de l’algèbre des transformées de Gelfand de l’algèbre de groupe de G .

Non prolongement unique des solutions d'opérateurs «somme de carrés»

Hajer Bahouri (1986)

Annales de l'institut Fourier

Similarity:

Dans ce travail, nous avons montré que si P = i = 1 n - 1 x i 2 , où les x i sont des champs de vecteurs C linéairement independants dans un ouvert Ω de R n tels que l’algèbre de Lie qu’ils engendrent soit de rang maximum en tout point et la forme volume qu’on leur associe soit de classe 4 en un point x 0 de Ω , alors il existe un voisinage ouvert V de x 0 et une fonction a C ( V ) tels que P + a possède pas la propriété de prolongement unique.

Un théorème de Spitzer-Stone fort pour une matrice de Toeplitz à  symbole singulier défini par une classe de fonctions analytiques

Philippe Rambour, Jean-Marc Rinkel (2007)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

Dans cet article nous donnons une formule pour les coefficients de l’inverse des matrices de Toeplitz respectivement de symboles f ( e i θ ) = ( 1 - cos θ ) | f 1 ( e i θ ) | 2 (cas singulier) et | f 1 ( e i θ ) | 2 (cas régulier) où f 1 est une fonction appartenant à  une classe de fonctions holomorphes sur un disque ouvert contenant le tore 𝕋 et sans zéro sur 𝕋 . Un cas particulier défini par f 1 = Q P P et Q sont des polynômes sans zéro sur 𝕋 est traité. Dans le cas où le symbole est singulier, cette formule présente l’intérêt d’avoir un second ordre....

Sur les espaces de Fréchet ne contenant pas c 0

X. Fernique (1992)

Studia Mathematica

Similarity:

Soit E un espace de Fréchet séparable ne contenant pas c 0 ; soit de plus ( X n ) une suite symétrique de vecteurs aléatoires à valeurs dans E. Alors si la série de Fourier aléatoire X n e x p ( i λ n , t ) , t R d , a p.s. ses sommes partielles localement uniformément bornées dans E, nécessairement elle converge p.s. uniformément sur tout compact de R d vers une fonction aléatoire à valeurs dans E et à trajectoires continues.

Prolongement méromorphe des séries de Dirichlet associées à des fractions rationnelles de plusieurs variables

Patrick Sargos (1984)

Annales de l'institut Fourier

Similarity:

Soient P ( x _ ) = P ( x 1 , ... , x n ) et Q ( x _ ) = Q ( x 1 , ... , x n ) deux polynômes à coefficients positifs vérifiant : lim | x _ | + x 1 , ... , x n 1 P ( x _ ) Q ( x _ ) = + . Soient η _ = ( η 1 , ... , η n ) N n et R = P / Q . On étudie la série de Dirichlet Z ( R , η _ ; s ) = η 1 , ... , η n = 1 η _ η _ R ( η _ ) - s : abscisse de convergence absolue, existence et nature du prolongement méromorphe, ordre de grandeur dans les bandes verticales. On donne un procédé de construction du prolongement méromorphe de la fonction s Z ( R , η _ ; s ) qui ne dépend que de η _ et de certains monômes de P et Q : les monômes extrémaux.

Sur la méthode de Van der Corput pour les sommes d'exponentielles

Marouan Redouaby (2001)

Journal de théorie des nombres de Bordeaux

Similarity:

Pour majorer la somme d’exponentielle m = M + 1 2 M e ( T F ( m / M ) ) , F : [1,2] est une fonction “presque monomiale”, M est une entier grand et T un réel grand devant M 4 , nous étudions le procédé A k B A D , A et B désignent comme d’habitude les transformations A et B de Van der Corput [2], et où D désigne le double grand crible appliqué dans l’esprit de Fouvry et Iwaniec [1]. Nos résultats complètent le tableau 17.1 de [5] (voir également [4]) et sont résumés dans le corollaire 2 ci-dessous.